Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Proteome Res ; 21(1): 77-89, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34855411

RESUMEN

Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.


Asunto(s)
Cianobacterias , Trichodesmium , Cianobacterias/metabolismo , Biomarcadores Ambientales , Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Trichodesmium/genética , Trichodesmium/metabolismo
2.
Mol Biol Evol ; 38(3): 927-939, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33022053

RESUMEN

A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Dióxido de Carbono/fisiología , Metilación de ADN , Trichodesmium/genética , Epigenoma , Fenotipo , Transcripción Genética
3.
Glob Chang Biol ; 28(19): 5741-5754, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35795906

RESUMEN

Despite their relatively high thermal optima (Topt ), tropical taxa may be particularly vulnerable to a rising baseline and increased temperature variation because they live in relatively stable temperatures closer to their Topt . We examined how microbial eukaryotes with differing thermal histories responded to temperature fluctuations of different amplitudes (0 control, ±2, ±4°C) around mean temperatures below or above their Topt . Cosmopolitan dinoflagellates were selected based on their distinct thermal traits and included two species of the same genus (tropical and temperate Coolia spp.), and two strains of the same species maintained at different temperatures for >500 generations (tropical Amphidinium massartii control temperature and high temperature, CT and HT, respectively). There was a universal decline in population growth rate under temperature fluctuations, but strains with narrower thermal niche breadth (temperate Coolia and HT) showed ~10% greater reduction in growth. At suboptimal mean temperatures, cells in the cool phase of the fluctuation stopped dividing, fixed less carbon (C) and had enlarged cell volumes that scaled positively with elemental C, N, and P and C:Chlorophyll-a. However, at a supra-optimal mean temperature, fixed C was directed away from cell division and novel trait combinations developed, leading to greater phenotypic diversity. At the molecular level, heat-shock proteins, and chaperones, in addition to transcripts involving genome rearrangements, were upregulated in CT and HT during the warm phase of the supra-optimal fluctuation (30 ± 4°C), a stress response indicating protection. In contrast, the tropical Coolia species upregulated major energy pathways in the warm phase of its supra-optimal fluctuation (25 ± 4°C), indicating a broadscale shift in metabolism. Our results demonstrate divergent effects between taxa and that temporal variability in environmental conditions interacts with changes in the thermal mean to mediate microbial responses to global change, with implications for biogeochemical cycling.


Asunto(s)
Cambio Climático , Dinoflagelados , Frío , Dinoflagelados/genética , Calor , Fenotipo , Temperatura
4.
Proc Natl Acad Sci U S A ; 113(47): E7367-E7374, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27830646

RESUMEN

Most investigations of biogeochemically important microbes have focused on plastic (short-term) phenotypic responses in the absence of genetic change, whereas few have investigated adaptive (long-term) responses. However, no studies to date have investigated the molecular progression underlying the transition from plasticity to adaptation under elevated CO2 for a marine nitrogen-fixer. To address this gap, we cultured the globally important cyanobacterium Trichodesmium at both low and high CO2 for 4.5 y, followed by reciprocal transplantation experiments to test for adaptation. Intriguingly, fitness actually increased in all high-CO2 adapted cell lines in the ancestral environment upon reciprocal transplantation. By leveraging coordinated phenotypic and transcriptomic profiles, we identified expression changes and pathway enrichments that rapidly responded to elevated CO2 and were maintained upon adaptation, providing strong evidence for genetic assimilation. These candidate genes and pathways included those involved in photosystems, transcriptional regulation, cell signaling, carbon/nitrogen storage, and energy metabolism. Conversely, significant changes in specific sigma factor expression were only observed upon adaptation. These data reveal genetic assimilation as a potentially adaptive response of Trichodesmium and importantly elucidate underlying metabolic pathways paralleling the fixation of the plastic phenotype upon adaptation, thereby contributing to the few available data demonstrating genetic assimilation in microbial photoautotrophs. These molecular insights are thus critical for identifying pathways under selection as drivers in plasticity and adaptation.


Asunto(s)
Proteínas Bacterianas/genética , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Trichodesmium/crecimiento & desarrollo , Adaptación Fisiológica , Metabolismo Energético , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Fijación del Nitrógeno , Factor sigma/genética , Trichodesmium/genética
5.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180365

RESUMEN

Nitrogen-fixing (N2) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N2 fixer Trichodesmium fundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO2 adaptation under iron and/or phosphorus (co)limitation. Global shifts in transcripts and proteins under high-CO2/Fe-limited and/or P-limited conditions include decreases in the N2-fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N2 fixation. In a future high-CO2 ocean, this whole-cell energetic reallocation toward organic nitrogen scavenging and away from N2 fixation may reduce new-nitrogen inputs by Trichodesmium while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open-ocean ecosystems.IMPORTANCETrichodesmium is among the most biogeochemically significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open-ocean food webs. We used Trichodesmium cultures adapted to high-CO2 conditions for 7 years, followed by additional exposure to iron and/or phosphorus (co)limitation. We show that "future ocean" conditions of high CO2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation and instead toward upregulation of organic nitrogen-scavenging pathways. We show that the responses of Trichodesmium to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift toward organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO2 ocean, with potential global implications for ocean carbon and nitrogen cycling.


Asunto(s)
Dióxido de Carbono/metabolismo , Metilaminas/metabolismo , Nitrógeno/metabolismo , Agua de Mar/química , Trichodesmium/metabolismo , Adaptación Biológica , Ciclo del Nitrógeno , Fijación del Nitrógeno , Nutrientes/metabolismo , Océanos y Mares , Agua de Mar/microbiología
6.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054872

RESUMEN

Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO2, potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia.IMPORTANCETrichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium.


Asunto(s)
Dióxido de Carbono/metabolismo , Consorcios Microbianos/genética , Ciclo del Nitrógeno , Fijación del Nitrógeno , Selección Genética , Trichodesmium/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Proteoma , Transcriptoma
7.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076192

RESUMEN

Cyanobacteria are foundational drivers of global nutrient cycling, with high intracellular iron (Fe) requirements. Fe is found at extremely low concentrations in aquatic systems, however, and the ways in which cyanobacteria take up Fe are largely unknown, especially the initial step in Fe transport across the outer membrane. Here, we identified one TonB protein and four TonB-dependent transporters (TBDTs) of the energy-requiring Fe acquisition system and six porins of the passive diffusion Fe uptake system in the model cyanobacterium Synechocystis sp. strain PCC 6803. The results experimentally demonstrated that TBDTs not only participated in organic ferri-siderophore uptake but also in inorganic free Fe (Fe') acquisition. 55Fe uptake rate measurements showed that a TBDT quadruple mutant acquired Fe at a lower rate than the wild type and lost nearly all ability to take up ferri-siderophores, indicating that TBDTs are critical for siderophore uptake. However, the mutant retained the ability to take up Fe' at 42% of the wild-type Fe' uptake rate, suggesting additional pathways of Fe' acquisition besides TBDTs, likely by porins. Mutations in four of the six porin-encoding genes produced a low-Fe-sensitive phenotype, while a mutation in all six genes was lethal to cell survival. These diverse outer membrane Fe uptake pathways reflect cyanobacterial evolution and adaptation under a range of Fe regimes across aquatic systems.IMPORTANCE Cyanobacteria are globally important primary producers and contribute about 25% of global CO2 fixation. Low Fe bioavailability in surface waters is thought to limit the primary productivity in as much as 40% of the global ocean. The Fe acquisition strategies that cyanobacteria have evolved to overcome Fe deficiency remain poorly characterized. We experimentally characterized the key players and the cooperative work mode of two Fe uptake pathways, including an active uptake pathway and a passive diffusion pathway in the model cyanobacterium Synechocystis sp. PCC 6803. Our finding proved that cyanobacteria use ferri-siderophore transporters to take up Fe', and they shed light on the adaptive mechanisms of cyanobacteria to cope with widespread Fe deficiency across aquatic environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Mutación , Sideróforos/metabolismo , Synechocystis/genética
8.
Sci Total Environ ; 947: 174345, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960174

RESUMEN

Seaweed cultivation can inhibit the occurrence of red tides. However, how seaweed aquaculture interactions with harmful algal blooms will be affected by the increasing occurrence and intensity of marine heatwaves (MHWs) is unknown. In this study, we run both monoculture and coculture systems to investigate the effects of a simulated heatwave on the competition of the economically important macroalga Gracilariopsis lemaneiformis against the harmful bloom diatom Skeletonema costatum. Coculture with G. lemaneiformis led to a growth decrease in S. costatum. Growth and photosynthetic activity (Fv/Fm) of G. lemaneiformis was greatly reduced by the heatwave treatment, and did not recover even after one week. Growth and photosynthetic activity of S. costatum was also reduced by the heatwave in coculture, but returned to normal during the recovery period. S. costatum also responded to the stressful environment by forming aggregates. Metabolomic analysis suggests that the negative effects on S. costatum were related to an allelochemical release from G. lemaneiformis. These findings show that MHWs may enhance the competitive advantages of S. costatum against G. lemaneiformis, leading to more severe harmful algal blooms in future extreme weather scenarios.


Asunto(s)
Diatomeas , Floraciones de Algas Nocivas , Algas Marinas , Diatomeas/fisiología , Algas Marinas/fisiología , Calor Extremo , Acuicultura , Gracilaria/fisiología , Fotosíntesis
9.
Mar Life Sci Technol ; 6(3): 562-575, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39219678

RESUMEN

Phosphorus concentration on the surface of seawater varies greatly with different environments, especially in coastal. The molecular mechanism by which cyanobacteria adapt to fluctuating phosphorus bioavailability is still unclear. In this study, transcriptomes and gene knockouts were used to investigate the adaptive molecular mechanism of a model coastal cyanobacterium Synechococcus sp. PCC 7002 during periods of phosphorus starvation and phosphorus recovery (adding sufficient phosphorus after phosphorus starvation). The findings indicated that phosphorus deficiency affected the photosynthesis, ribosome synthesis, and bacterial motility pathways, which recommenced after phosphorus was resupplied. Even more, most of the metabolic pathways of cyanobacteria were enhanced after phosphorus recovery compared to the control which was kept in continuous phosphorus replete conditions. Based on transcriptome, 54 genes potentially related to phosphorus-deficiency adaptation were selected and knocked out individually or in combination. It was found that five mutants showed weak growth phenotype under phosphorus deficiency, indicating the importance of the genes (A0076, A0549-50, A1094, A1320, A1895) in the adaptation of phosphorus deficiency. Three mutants were found to grow better than the wild type under phosphorus deficiency, suggesting that the products of these genes (A0079, A0340, A2284-86) might influence the adaptation to phosphorus deficiency. Bioinformatics analysis revealed that cyanobacteria exposed to highly fluctuating phosphorus concentrations have more sophisticated phosphorus acquisition strategies. These results elucidated that Synechococcus sp. PCC 7002 have variable phosphorus response mechanisms to adapt to fluctuating phosphorus concentration, providing a novel perspective of how cyanobacteria may respond to the complex and dynamic environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00244-y.

10.
ISME Commun ; 3(1): 15, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823453

RESUMEN

The colony-forming cyanobacteria Trichodesmium spp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered. To address these questions, we describe Trichodesmium pangenomic potential via significantly improved genomic assemblies from two isolates and 15 new >50% complete Trichodesmium metagenome-assembled genomes from hand-picked, Trichodesmium colonies spanning the Atlantic Ocean. Phylogenomics identified ~four N2 fixing clades of Trichodesmium across the transect, with T. thiebautii dominating the colony-specific reads. Pangenomic analyses showed that all T. thiebautii MAGs are enriched in COG defense mechanisms and encode a vertically inherited Type III-B Clustered Regularly Interspaced Short Palindromic Repeats and associated protein-based immunity system (CRISPR-Cas). Surprisingly, this CRISPR-Cas system was absent in all T. erythraeum genomes, vertically inherited by T. thiebautii, and correlated with increased signatures of horizontal gene transfer. Additionally, the system was expressed in metaproteomic and transcriptomic datasets and CRISPR spacer sequences with 100% identical hits to field-assembled, putative phage genome fragments were identified. While the currently CO2-limited T. erythraeum is expected to be a 'winner' of anthropogenic climate change, their genomic dearth of known phage resistance mechanisms, compared to T. thiebautii, could put this outcome in question. Thus, the clear demarcation of T. thiebautii maintaining CRISPR-Cas systems, while T. erythraeum does not, identifies Trichodesmium as an ecologically important CRISPR-Cas model system, and highlights the need for more research on phage-Trichodesmium interactions.

11.
Harmful Algae ; 127: 102467, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37544669

RESUMEN

Along the west coast of the United States, highly toxic Pseudo-nitzschia blooms have been associated with two contrasting regional phenomena: seasonal upwelling and marine heatwaves. While upwelling delivers cool water rich in pCO2 and an abundance of macronutrients to the upper water column, marine heatwaves instead lead to warmer surface waters, low pCO2, and reduced nutrient availability. Understanding Pseudo-nitzschia dynamics under these two conditions is important for bloom forecasting and coastal management, yet the mechanisms driving toxic bloom formation during contrasting upwelling vs. heatwave conditions remain poorly understood. To gain a better understanding of what drives Pseudo-nitzschia australis growth and toxicity during these events, multiple-driver scenario or 'cluster' experiments were conducted using temperature, pCO2, and nutrient levels reflecting conditions during upwelling (13 °C, 900 ppm pCO2, replete nutrients) and two intensities of marine heatwaves (19 °C or 20.5 °C, 250 ppm pCO2, reduced macronutrients). While P. australis grew equally well under both heatwave and upwelling conditions, similar to what has been observed in the natural environment, cells were only toxic in the upwelling treatment. We also conducted single-driver experiments to gain a mechanistic understanding of which drivers most impact P. australis growth and toxicity. These experiments indicated that nitrogen concentration and N:P ratio were likely the drivers that most influenced domoic acid production, while the impacts of temperature or pCO2 concentration were less pronounced. Together, these experiments may help to provide both mechanistic and holistic perspectives on toxic P. australis blooms in the dynamic and changing coastal ocean, where cells interact simultaneously with multiple altered environmental variables.


Asunto(s)
Diatomeas , Ácido Kaínico/toxicidad , Agua , Ambiente
12.
ISME J ; 17(4): 525-536, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36658395

RESUMEN

Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO2 using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment. Ocean warming showed larger selective effects on growth and DA metabolism than ocean acidification. In a bulk culture experiment, increasing temperature +4 °C above ambient seawater temperature significantly increased DA concentration by up to 11-fold. In laboratory when the long-term warming acclimated samples were assayed under low temperatures, changes in growth rates and DA concentrations indicated that P. multiseries did not adapt to elevated temperature, but could instead rapidly and reversibly acclimate to temperature shifts. However, the warming-acclimated lines showed evidence of adaptation to elevated temperatures in the transcriptome data. Here the core gene expression was not reversed when warming-acclimated lines were moved back to the low temperature environment, which suggested that P. multiseries cells might adapt to rising temperature over longer timescales. The distinct strategies of phenotypic plasticity to rising temperature and pCO2 demonstrate a strong acclimation capacity for this bloom-forming toxic diatom in the future ocean.


Asunto(s)
Diatomeas , Diatomeas/genética , Neurotoxinas/metabolismo , Concentración de Iones de Hidrógeno , Agua de Mar , Océanos y Mares
13.
ISME J ; 16(12): 2702-2711, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36008474

RESUMEN

In the nitrogen-limited subtropical gyres, diazotrophic cyanobacteria, including Crocosphaera, provide an essential ecosystem service by converting dinitrogen (N2) gas into ammonia to support primary production in these oligotrophic regimes. Natural gradients of phosphorus (P) and iron (Fe) availability in the low-latitude oceans constrain the biogeography and activity of diazotrophs with important implications for marine biogeochemical cycling. Much remains unknown regarding Crocosphaera's physiological and molecular responses to multiple nutrient limitations. We cultured C. watsonii under Fe, P, and Fe/P (co)-limiting scenarios to link cellular physiology with diel gene expression and observed unique physiological and transcriptional profiles for each treatment. Counterintuitively, reduced growth and N2 fixation resource use efficiencies (RUEs) for Fe or P under P limitation were alleviated under Fe/P co-limitation. Differential gene expression analyses show that Fe/P co-limited cells employ the same responses as single-nutrient limited cells that reduce cellular nutrient requirements and increase responsiveness to environmental change including smaller cell size, protein turnover (Fe-limited), and upregulation of environmental sense-and-respond systems (P-limited). Combined, these mechanisms enhance growth and RUEs in Fe/P co-limited cells. These findings are important to our understanding of nutrient controls on N2 fixation and the implications for primary productivity and microbial dynamics in a changing ocean.


Asunto(s)
Cianobacterias , Fósforo , Fósforo/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/fisiología , Hierro/metabolismo , Ecosistema , Agua de Mar/microbiología , Cianobacterias/metabolismo
14.
Environ Microbiol Rep ; 14(2): 203-217, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35023627

RESUMEN

The globally dominant N2 -fixing cyanobacteria Trichodesmium and Crocosphaera provide vital nitrogen supplies to subtropical and tropical oceans, but little is known about how they will be affected by long-term ocean warming. We tested their thermal responses using experimental evolution methods during 2 years of selection at optimal (28°C), supra-optimal (32°C) and suboptimal (22°C) temperatures. After several hundred generations under thermal selection, changes in growth parameters, as well as N and C fixation rates, suggested that Trichodesmium did not adapt to the three selection temperature regimes during the 2-year evolution experiment, but could instead rapidly and reversibly acclimate to temperature shifts from 20°C to 34°C. In contrast, over the same timeframe apparent thermal adaptation was observed in Crocosphaera, as evidenced by irreversible phenotypic changes as well as whole-genome sequencing and variant analysis. Especially under stressful warming conditions (34°C), 32°C-selected Crocosphaera cells had an advantage in survival and nitrogen fixation over cell lines selected at 22°C and 28°C. The distinct strategies of phenotypic plasticity versus irreversible adaptation in these two sympatric diazotrophs are both viable ways to maintain fitness despite long-term temperature changes, and so could help to stabilize key ocean nitrogen cycle functions under future warming scenarios.


Asunto(s)
Cianobacterias , Nitrógeno , Aclimatación , Cianobacterias/genética , Cianobacterias/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno , Océanos y Mares
15.
ISME J ; 15(6): 1599-1613, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33452476

RESUMEN

Arsenic pollution is a widespread threat to marine life, but the ongoing rise pCO2 levels is predicted to decrease bio-toxicity of arsenic. However, the effects of arsenic toxicity on marine primary producers under elevated pCO2 are not well characterized. Here, we studied the effects of arsenic toxicity in three globally distributed diatom species (Phaeodactylum tricornutum, Thalassiosira pseudonana, and Chaetoceros mulleri) after short-term acclimation (ST, 30 days), medium-term exposure (MT, 750 days), and long-term (LT, 1460 days) selection under ambient (400 µatm) and elevated (1000 and 2000 µatm) pCO2. We found that elevated pCO2 alleviated arsenic toxicity even after short acclimation times but the magnitude of the response decreased after mid and long-term adaptation. When fed with these elevated pCO2 selected diatoms, the scallop Patinopecten yessoensis had significantly lower arsenic content (3.26-52.83%). Transcriptomic and biochemical analysis indicated that the diatoms rapidly developed arsenic detoxification strategies, which included upregulation of transporters associated with shuttling harmful compounds out of the cell to reduce arsenic accumulation, and upregulation of proteins involved in synthesizing glutathione (GSH) to chelate intracellular arsenic to reduce arsenic toxicity. Thus, our results will expand our knowledge to fully understand the ecological risk of trace metal pollution under increasing human activity induced ocean acidification.


Asunto(s)
Arsénico , Diatomeas , Aclimatación , Arsénico/toxicidad , Dióxido de Carbono , Humanos , Concentración de Iones de Hidrógeno , Agua de Mar
16.
Nature ; 432(7019): 897-901, 2004 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-15602560

RESUMEN

The Redfield ratio of 106 carbon:16 nitrogen:1 phosphorus in marine phytoplankton is one of the foundations of ocean biogeochemistry, with applications in algal physiology, palaeoclimatology and global climate change. However, this ratio varies substantially in response to changes in algal nutrient status and taxonomic affiliation. Here we report that Redfield ratios are also strongly affected by partitioning into surface-adsorbed and intracellular phosphorus pools. The C:N:surface-adsorbed P (80-105 C:15-18 N:1 P) and total (71-80 C:13-14 N:1 P) ratios in natural populations and cultures of Trichodesmium were close to Redfield values and not significantly different from each other. In contrast, intracellular ratios consistently exceeded the Redfield ratio (316-434 C:59-83 N:1 intracellular P). These high intracellular ratios were associated with reduced N2 fixation rates, suggestive of phosphorus deficiency. Other algal species also have substantial surface-adsorbed phosphorus pools, suggesting that our Trichodesmium results are generally applicable to all phytoplankton. Measurements of the distinct phytoplankton phosphorus pools may be required to assess nutrient limitation accurately from elemental composition. Deviations from Redfield stoichiometry may be attributable to surface adsorption of phosphorus rather than to biological processes, and this scavenging could affect the interpretation of marine nutrient inventories and ecosystem models.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Fitoplancton/metabolismo , Adsorción , Océano Atlántico , Cianobacterias/citología , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Manganeso/metabolismo , Fijación del Nitrógeno , Fitoplancton/citología , Fitoplancton/crecimiento & desarrollo
17.
Front Microbiol ; 10: 1282, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244804

RESUMEN

Surface temperature in the ocean is projected to be elevated and more variable in the future, which will interact with other environmental changes like reduced nutrient supplies. To explore these multiple stressor relationships, we tested the influence of thermal variation on the key marine diazotrophic cyanobacterium Trichodesmium erythraeum GBRTRLI101 as a function of the limiting nutrient phosphorus (P). Two constant temperature treatments represented current winter (22°C) and summer (30°C) mean values. Three variable temperature treatments fluctuated around the constant control values: Mean 22°C, either ± 2°C or ± 4°C; and mean 30°C ± 2°C. Each thermal treatment was grown under both P-replete (10 µmol/L) and P-limiting conditions (0.2 µmol/L). Effects of thermal variability on Trichodesmium were mainly found in the two winter variable temperature treatments (22°C ± 2°C or ± 4°C). P availability affected growth and physiology in all treatments and had significant interactions with temperature. P-replete cultures had higher growth and nitrogen and carbon fixation rates in the 22°C constant control, than in the corresponding variable treatments. However, physiological rates were not different in the P-replete constant and variable treatments at 30°C. In contrast, in P-limited cultures an advantage of constant temperature over variable temperature was not apparent. Phosphorus use efficiencies (PUE, mol N or C fixed h-1 mol cellular P-1) for nitrogen and carbon fixation were significantly elevated under P-limited conditions, and increased with temperature from 22 to 30°C, implying a potential advantage in a future warmer, P-limited environment. Taken together, these results imply that future increasing temperature and greater thermal variability could have significant feedback interactions with the projected intensification of P-limitation of marine N2-fixing cyanobacteria.

18.
Sci Rep ; 8(1): 2415, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402976

RESUMEN

Distribution of diazotrophs and their nitrogen fixation activity were investigated in the northern South China Sea (nSCS) and the Kuroshio from July 16th to September 1st, 2009. N2 fixation activities in whole seawater and <10 µm fraction at the surface were measured by acetylene reduction assay. Higher activities were observed at the East China Sea (ECS) Kuroshio and the nSCS shelf. The nSCS basin showed a low N2 fixation activity. The <10 µm fractions (unicellular diazotrophs) contributed major portion to the whole-water activity in the survey time, indicating that nanoplanktonic cyanobacterias were the major diazotrophs in the survey area. Daily N2 fixation rates of Trichodesmium ranged from 0.11 to 9.83 pmolNtrichome-1 d-1 with an average of 4.03 pmolNtrichome-1 d-1. The Luzon Strait and the ECS Kuroshio had higher N2 fixation rates of Trichodesmium than the nSCS shelf and basin. Calculated activities of Trichodesmium at most stations were moderately low compared with that of the whole-water. The contribution of N2 fixation by the whole-water to primary production ranged from 1.7% to 18.5%. The estimated amount of new nitrogen introduced by Trichodesmium contributed up to 0.14% of the total primary production and 0.41% of the new production in the Luzon Strait.


Asunto(s)
Fijación del Nitrógeno/fisiología , Nitrógeno/química , Agua de Mar/química , Trichodesmium/metabolismo , Acetileno/química , Bioensayo , China , Cinética , Nitrógeno/metabolismo , Oxidación-Reducción , Océano Pacífico , Estaciones del Año , Agua de Mar/microbiología , Microbiología del Agua
19.
Front Microbiol ; 9: 189, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487583

RESUMEN

Only select prokaryotes can biosynthesize vitamin B12 (i.e., cobalamins), but these organic co-enzymes are required by all microbial life and can be vanishingly scarce across extensive ocean biomes. Although global ocean genome data suggest cyanobacteria to be a major euphotic source of cobalamins, recent studies have highlighted that >95% of cyanobacteria can only produce a cobalamin analog, pseudo-B12, due to the absence of the BluB protein that synthesizes the α ligand 5,6-dimethylbenzimidizole (DMB) required to biosynthesize cobalamins. Pseudo-B12 is substantially less bioavailable to eukaryotic algae, as only certain taxa can intracellularly remodel it to one of the cobalamins. Here we present phylogenetic, metagenomic, transcriptomic, proteomic, and chemical analyses providing multiple lines of evidence that the nitrogen-fixing cyanobacterium Trichodesmium transcribes and translates the biosynthetic, cobalamin-requiring BluB enzyme. Phylogenetic evidence suggests that the Trichodesmium DMB biosynthesis gene, bluB, is of ancient origin, which could have aided in its ecological differentiation from other nitrogen-fixing cyanobacteria. Additionally, orthologue analyses reveal two genes encoding iron-dependent B12 biosynthetic enzymes (cbiX and isiB), suggesting that iron availability may be linked not only to new nitrogen supplies from nitrogen fixation, but also to B12 inputs by Trichodesmium. These analyses suggest that Trichodesmium contains the genus-wide genomic potential for a previously unrecognized role as a source of cobalamins, which may prove to considerably impact marine biogeochemical cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA