Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hepatol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670321

RESUMEN

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS: Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS: EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.

2.
Med Res Rev ; 43(3): 683-712, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36658745

RESUMEN

Cardio-metabolic-diseases (cardio-metabolic-diseases) are leading causes of death and disability worldwide and impose a tremendous burden on whole society as well as individuals. As a new type of regulated cell death (RCD), ferroptosis is distinct from several classical types of RCDs such as apoptosis and necroptosis in cell morphology, biochemistry, and genetics. The main molecular mechanisms of ferroptosis involve iron metabolism dysregulation, mitochondrial malfunction, impaired antioxidant capacity, accumulation of lipid-related peroxides and membrane disruption. Within the past few years, mounting evidence has shown that ferroptosis contributes to the pathophysiological process in cardio-metabolic-diseases. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This review comprehensively summarizes the mechanism of ferroptosis in the development and progression of cardio-metabolic-diseases, so as to provide new insights for cardio-metabolic-diseases pathophysiology. Moreover, we highlight potential druggable molecules in ferroptosis signaling pathway, and discuss recent advances in management strategies by targeting ferroptosis for prevention and treatment of cardio-metabolic-diseases.


Asunto(s)
Ferroptosis , Enfermedades Metabólicas , Humanos , Apoptosis , Enfermedades Metabólicas/tratamiento farmacológico , Antioxidantes , Peróxidos Lipídicos
3.
Eur Heart J ; 43(43): 4579-4595, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35929617

RESUMEN

AIMS: Exercise confers protection against cardiovascular ageing, but the mechanisms remain largely unknown. This study sought to investigate the role of fibronectin type-III domain-containing protein 5 (FNDC5)/irisin, an exercise-associated hormone, in vascular ageing. Moreover, the existence of FNDC5/irisin in circulating extracellular vesicles (EVs) and their biological functions was explored. METHODS AND RESULTS: FNDC5/irisin was reduced in natural ageing, senescence, and angiotensin II (Ang II)-treated conditions. The deletion of FNDC5 shortened lifespan in mice. Additionally, FNDC5 deficiency aggravated vascular stiffness, senescence, oxidative stress, inflammation, and endothelial dysfunction in 24-month-old naturally aged and Ang II-treated mice. Conversely, treatment of recombinant irisin alleviated Ang II-induced vascular stiffness and senescence in mice and vascular smooth muscle cells. FNDC5 was triggered by exercise, while FNDC5 knockout abrogated exercise-induced protection against Ang II-induced vascular stiffness and senescence. Intriguingly, FNDC5 was detected in human and mouse blood-derived EVs, and exercise-induced FNDC5/irisin-enriched EVs showed potent anti-stiffness and anti-senescence effects in vivo and in vitro. Adeno-associated virus-mediated rescue of FNDC5 specifically in muscle but not liver in FNDC5 knockout mice, promoted the release of FNDC5/irisin-enriched EVs into circulation in response to exercise, which ameliorated vascular stiffness, senescence, and inflammation. Mechanistically, irisin activated DnaJb3/Hsp40 chaperone system to stabilize SIRT6 protein in an Hsp70-dependent manner. Finally, plasma irisin concentrations were positively associated with exercise time but negatively associated with arterial stiffness in a proof-of-concept human study. CONCLUSION: FNDC5/irisin-enriched EVs contribute to exercise-induced protection against vascular ageing. These findings indicate that the exerkine FNDC5/irisin may be a potential target for ageing-related vascular comorbidities.


Asunto(s)
Vesículas Extracelulares , Sirtuinas , Humanos , Ratones , Animales , Anciano , Preescolar , Fibronectinas/metabolismo , Factores de Transcripción/metabolismo , Ratones Noqueados , Envejecimiento , Angiotensina II/farmacología , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo
4.
Clin Exp Pharmacol Physiol ; 48(2): 238-249, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33051888

RESUMEN

Glucose homeostasis is tightly controlled by balance between glucose production and uptake in liver tissue upon energy shortage condition. Altered glucose homeostasis contributes to the pathophysiology of metabolic disorders including diabetes and obesity. Here, we aimed to analyse the change of proteomic profile upon prolonged fasting in mice with isobaric tag for relative and absolute quantification (iTRAQ) labelling followed by liquid chromatography-mass spectrometry (LC/MS) technology. Adult male mice were fed or fasted for 16 hours and liver tissues were collected for iTRAQ labelling followed by LC/MS analysis. A total of 322 differentially expressed proteins were identified, including 189 upregulated and 133 downregulated proteins. Bioinformatics analyses, including Gene Ontology analysis (GO), Kyoto encyclopaedia of genes and genomes analysis (KEGG) and protein-protein interaction analysis (PPI) were conducted to understand biological process, cell component, and molecular function of the 322 differentially expressed proteins. Among 322 hepatic proteins differentially expressed between fasting and fed mice, we validated three upregulated proteins (Pqlc2, Ehhadh and Apoa4) and two downregulated proteins (Uba52 and Rpl37) by western-blotting analysis. In cultured HepG2 hepatocellular cells, we found that depletion of Pqlc2 by siRNA-mediated knockdown impaired the insulin-induced glucose uptake, inhibited GLUT2 mRNA level and suppressed the insulin-induced Akt phosphorylation. By contrast, knockdown of Pqlc2 did not affect the cAMP/dexamethasone-induced gluconeogenesis. In conclusion, our study provides important information on protein profile change during prolonged fasting with iTRAQ- and LC-MS/MS-based quantitative proteomics, and identifies Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway in this process.


Asunto(s)
Proteómica , Animales , Glucosa , Masculino , Ratones , Transducción de Señal
5.
Adv Sci (Weinh) ; 11(16): e2305715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417117

RESUMEN

Drug-induced liver injury (DILI) is a significant global health issue that poses high mortality and morbidity risks. One commonly observed cause of DILI is acetaminophen (APAP) overdose. GSDME is an effector protein that induces non-canonical pyroptosis. In this study, the activation of GSDME, but not GSDMD, in the liver tissue of mice and patients with APAP-DILI is reported. Knockout of GSDME, rather than GSDMD, in mice protected them from APAP-DILI. Mice with hepatocyte-specific rescue of GSDME reproduced APAP-induced liver injury. Furthermore, alterations in the immune cell pools observed in APAP-induced DILI, such as the replacement of TIM4+ resident Kupffer cells (KCs) by monocyte-derived KCs, Ly6C+ monocyte infiltration, MerTk+ macrophages depletion, and neutrophil increase, reappeared in mice with hepatocyte-specific rescue of GSDME. Mechanistically, APAP exposure led to a substantial loss of interferon-stimulated gene 15 (ISG15), resulting in deISGylation of carbamoyl phosphate synthetase-1 (CPS1), promoted its degradation via K48-linked ubiquitination, causing ammonia clearance dysfunction. GSDME deletion prevented these effects. Delayed administration of dimethyl-fumarate inhibited GSDME cleavage and alleviated ammonia accumulation, mitigating liver injury. This findings demonstrated a previously uncharacterized role of GSDME in APAP-DILI by promoting pyroptosis and CPS1 deISGylation, suggesting that inhibiting GSDME can be a promising therapeutic option for APAP-DILI.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Gasderminas , Piroptosis , Animales , Humanos , Masculino , Ratones , Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Fallo Hepático/metabolismo , Fallo Hepático/inducido químicamente , Ratones Endogámicos C57BL , Ratones Noqueados , Piroptosis/efectos de los fármacos
6.
Cell Death Differ ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009654

RESUMEN

Dysregulated metabolism, cell death, and inflammation contribute to the development of metabolic dysfunction-associated steatohepatitis (MASH). Pyroptosis, a recently identified form of programmed cell death, is closely linked to inflammation. However, the precise role of pyroptosis, particularly gasdermin-E (GSDME), in MASH development remains unknown. In this study, we observed GSDME cleavage and GSDME-associated interleukin-1ß (IL-1ß)/IL-18 induction in liver tissues of MASH patients and MASH mouse models induced by a choline-deficient high-fat diet (CDHFD) or a high-fat/high-cholesterol diet (HFHC). Compared with wild-type mice, global GSDME knockout mice exhibited reduced liver steatosis, steatohepatitis, fibrosis, endoplasmic reticulum stress, lipotoxicity and mitochondrial dysfunction in CDHFD- or HFHC-induced MASH models. Moreover, GSDME knockout resulted in increased energy expenditure, inhibited intestinal nutrient absorption, and reduced body weight. In the mice with GSDME deficiency, reintroduction of GSDME in myeloid cells-rather than hepatocytes-mimicked the MASH pathologies and metabolic dysfunctions, as well as the changes in the formation of neutrophil extracellular traps and hepatic macrophage/monocyte subclusters. These subclusters included shifts in Tim4+ or CD163+ resident Kupffer cells, Ly6Chi pro-inflammatory monocytes, and Ly6CloCCR2loCX3CR1hi patrolling monocytes. Integrated analyses of RNA sequencing and quantitative proteomics revealed a significant GSDME-dependent reduction in citrullination at the arginine-114 (R114) site of dynamin-related protein 1 (Drp1) during MASH. Mutation of Drp1 at R114 reduced its stability, impaired its ability to redistribute to mitochondria and regulate mitophagy, and ultimately promoted its degradation under MASH stress. GSDME deficiency reversed the de-citrullination of Drp1R114, preserved Drp1 stability, and enhanced mitochondrial function. Our study highlights the role of GSDME in promoting MASH through regulating pyroptosis, Drp1 citrullination-dependent mitochondrial function, and energy balance in the intestine and liver, and suggests that GSDME may be a potential therapeutic target for managing MASH.

7.
Nat Commun ; 15(1): 1429, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365899

RESUMEN

Senescence of vascular smooth muscle cells (VSMCs) contributes to aging-related cardiovascular diseases by promoting arterial remodelling and stiffness. Ferroptosis is a novel type of regulated cell death associated with lipid oxidation. Here, we show that pro-ferroptosis signaling drives VSMCs senescence to accelerate vascular NAD+ loss, remodelling and aging. Pro-ferroptotic signaling is triggered in senescent VSMCs and arteries of aged mice. Furthermore, the activation of pro-ferroptotic signaling in VSMCs not only induces NAD+ loss and senescence but also promotes the release of a pro-senescent secretome. Pharmacological or genetic inhibition of pro-ferroptosis signaling, ameliorates VSMCs senescence, reduces vascular stiffness and retards the progression of abdominal aortic aneurysm in mice. Mechanistically, we revealed that inhibition of pro-ferroptotic signaling facilitates the nuclear-cytoplasmic shuttling of proliferator-activated receptor-γ and, thereby impeding nuclear receptor coactivator 4-ferrtin complex-centric ferritinophagy. Finally, the activated pro-ferroptotic signaling correlates with arterial stiffness in a human proof-of-concept study. These findings have significant implications for future therapeutic strategies aiming to eliminate vascular ferroptosis in senescence- or aging-associated cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Músculo Liso Vascular , Humanos , Animales , Ratones , Senescencia Celular/genética , Enfermedades Cardiovasculares/metabolismo , NAD/metabolismo , Células Cultivadas , Envejecimiento/fisiología , Arterias , Miocitos del Músculo Liso/metabolismo
8.
Antioxid Redox Signal ; 39(7-9): 512-530, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36851903

RESUMEN

Significance: Pyroptosis is a discovered programmed cell death that is mainly executed by the gasdermin protein family. Cell swelling and membrane perforation are observed when pyroptosis occurs, and is accompanied by the liberation of cell contents. Recent Advances: As the study of pyroptosis continues to progress, there is increasing evidence that pyroptosis influences the development of tumors. In addition, the relationship between pyroptosis and tumor is diverse for different tissues and cells. Critical Issues: In this review, we first introduce the research history and molecular mechanisms of pyroptosis. Then we specifically discuss the link between pyroptosis and metabolic and oxidation in tumorigenesis. In the subsequent sections, we focus on the induction of pyroptosis in cancer and its potential role as a promising target for cancer therapy, and discuss the implications of pyroptosis in tumor treatment. In addition, we further summarize the therapeutic value of pyroptosis in tumor treatment. Future Directions: A detailed understanding of the role played by pyroptosis in tumors will help us to further explore tumor formation and progression and provide ideas for the development of new pyroptosis-based therapeutic approaches for patients. Antioxid. Redox Signal. 39, 512-530.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Piroptosis/fisiología , Apoptosis/fisiología , Neoplasias/metabolismo , Carcinogénesis , Transformación Celular Neoplásica , Oxidación-Reducción
9.
Int Immunopharmacol ; 125(Pt A): 111133, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149573

RESUMEN

Acetaminophen (N-acetyl-p-aminophenol; APAP), a widely used effective nonsteroidal anti-inflammatory drug, leads to acute liver injury at overdose worldwide. Evidence showed that the severity of liver injury associated with the subsequent involvement of inflammatory mediators and immune cells. The innate immune stimulator of interferon genes protein (STING) pathway was critical in modulating inflammation. Here, we show that STING was activated and inflammation was enhanced in the liver in APAP-overdosed C57BL/6J mice, and Sting mutation (Stinggt/gt) mice exhibited less liver damage. Multiplexing flow cytometry displayed that Sting mutation changed hepatic recruitment and replacement of macrophages/monocytes in APAP-overdosed mice, which was inclined to anti-inflammation. In addition, Sting mutation limited NLRP3 activation in the liver in APAP-overdosed mice, and inhibited the expression of inflammatory cytokines. Finally, MCC950, a potent and selective NLRP3 inhibitor, significantly ameliorated APAP-induced liver injury and inflammation. Besides, pretreatment of MCC950 in C57 mice resulted in changes of immune cells infiltration in the liver similar to Stinggt/gt mice. Our study revealed that STING played a crucial role in APAP-induced acute liver injury, possibly by maintaining liver immune cells homeostasis and inhibiting NLRP3 inflammasome activation, suggesting that inhibiting STING-NLRP3 pathway might be a potential therapeutic strategy for acute liver injury.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Proteínas de la Membrana , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Proteínas de la Membrana/metabolismo , Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Endogámicos C57BL
10.
Br J Pharmacol ; 178(10): 2111-2130, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32037512

RESUMEN

BACKGROUND AND PURPOSE: Non-alcoholic fatty liver disease (NAFLD) is a worldwide public health problem with no established pharmacological therapy. Here, we explored the potential benefit of P7C3-A20, a novel aminopropyl carbazole compound with neuroprotective activity, in a NAFLD model, induced in mice by a high-fat diet (HFD). EXPERIMENTAL APPROACH: C57BL/6J mice were given a HFD (42% fat content) for 16 weeks to induce NAFLD. P7C3-A20 (20 mg·kg-1 ·day-1 ) was given by gavage for 2 weeks. Indirect calorimetry, histological analysis, immunoblotting, immunohistochemistry, and biomedical examinations were performed. Gut microbiota were determined using a 16S ribosomal RNA sequencing analysis. KEY RESULTS: P7C3-A20 treatment reduced body weight gain/adiposity, improved insulin resistance, promoted energy expenditure (O2 consumption/CO2 production), inhibited lipid oxidation, suppressed hepatic inflammation (Kupffer cell number and pro-inflammatory factors), decreased necroptosis/apoptosis (receptor-interacting protein kinase 3, cleaved caspase-3, and TUNEL), and alleviated liver fibrosis and injury. Mechanistically, P7C3-A20 stimulated FGF21 and FGF1 via activating liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), which further resulted in a reduced nuclear translocation of CREB-regulated transcription coactivator 2 (CRTC2). In AMPKα2 knockout mice, the protection of P7C3-A20 against HFD-induced metabolism abnormalities and fat accumulation, as well as the elevation of blood FGF21 and FGF1, was abolished. P7C3-A20 increased the gut microbiota species richness. Moreover, it enhanced the proportions of Akkermansia, Lactobacillus, and Prevotellaceae, while reducing the proportions of Enterobacteriaceae, Escherichia, and Parasutterella. CONCLUSIONS AND IMPLICATIONS: P7C3-A20 increased levels of NAD+ and alleviated NAFLD through stimulating FGF21 and FGF1 in an LKB1/AMPK/CRTC2-dependent manner and shaping gut microbiota. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Asunto(s)
Carbazoles/farmacología , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP , Animales , Dieta Alta en Grasa , Factor 1 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Hígado , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
11.
Theranostics ; 11(9): 4381-4402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754067

RESUMEN

Rationale: Nicotinamide adenine dinucleotide+ (NAD+)-boosting therapy has emerged as a promising strategy to treat various health disorders, while the underlying molecular mechanisms are not fully understood. Here, we investigated the involvement of fibronectin type III domain containing 5 (Fndc5) or irisin, which is a novel exercise-linked hormone, in the development and progression of nonalcoholic fatty liver disease (NAFLD). Methods: NAD+-boosting therapy was achieved by administrating of nicotinamide riboside (NR) in human and mice. The Fndc5/irisin levels in tissues and blood were measured in NR-treated mice or human volunteers. The therapeutic action of NR against NAFLD pathologies induced by high-fat diet (HFD) or methionine/choline-deficient diet (MCD) were compared between wild-type (WT) and Fndc5-/- mice. Recombinant Fndc5/irisin was infused to NALFD mice via osmotic minipump to test the therapeutic action of Fndc5/irisin. Various biomedical experiments were conducted in vivo and in vitro to know the molecular mechanisms underlying the stimulation of Fndc5/irisin by NR treatment. Results: NR treatment elevated plasma level of Fndc5/irisin in mice and human volunteers. NR treatment also increased Fndc5 expression in skeletal muscle, adipose and liver tissues in mice. In HFD-induced NAFLD mice model, NR displayed remarkable therapeutic effects on body weight gain, hepatic steatosis, steatohepatitis, insulin resistance, mitochondrial dysfunction, apoptosis and fibrosis; however, these actions of NR were compromised in Fndc5-/- mice. Chronic infusion of recombinant Fndc5/irisin alleviated the NAFLD pathological phenotypes in MCD-induced NAFLD mice model. Mechanistically, NR reduced the lipid stress-triggered ubiquitination of Fndc5, which increased Fndc5 protein stability and thus enhanced Fndc5 protein level. Using shRNA-mediated knockdown screening, we found that NAD+-dependent deacetylase SIRT2, rather than other sirtuins, interacts with Fndc5 to decrease Fndc5 acetylation, which reduces Fndc5 ubiquitination and stabilize it. Treatment of AGK2, a selective inhibitor of SIRT2, blocked the therapeutic action of NR against NAFLD pathologies and NR-induced Fndc5 deubiquitination/deacetylation. At last, we identified that the lysine sites K127/131 and K185/187/189 of Fndc5 may contribute to the SIRT2-dependent deacetylation and deubiquitination of Fndc5. Conclusions: The findings from this research for the first time demonstrate that NAD+-boosting therapy reverses NAFLD by regulating SIRT2-deppendent Fndc5 deacetylation and deubiquitination, which results in a stimulation of Fndc5/irisin, a novel exerkine. These results suggest that Fndc5/irisin may be a potential nexus between physical exercise and NAD+-boosting therapy in metabolic pathophysiology.


Asunto(s)
Fibronectinas/metabolismo , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Ubiquitinación/fisiología
12.
J Cancer Res Ther ; 12(Supplement): C252-C255, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28230029

RESUMEN

OBJECTIVE: The purpose was to explore the clinical effects and safety of gemcitabine plus nedaplatin in the treatment of advanced nasopharyngeal carcinoma. MATERIALS AND METHODS: From March 2014 to August 2015, we recruited 63 advanced nasopharyngeal carcinoma patients in our hospital. Moreover, the 62 cases were randomly divided into control group (n = 31) and treatment group (n = 32). Patients in the control groups were treated with 5-fluorouracil 500 mg/m 2 + 500 ml 0.9% sodium chloride injection intervenous drop infusion in day 1-5 plus cisplatin 20 mg/m 2 + 500 ml 0.9% sodium chloride injection intervenous drop infusion in day 1-5 with 21 days per cycle for 3 cycles; Moreover, patients in the treatment group were given gemcitabine 1000 mg/m 2 + 500 ml 0.9% sodium chloride injection intervenous drop infusion in day 1 and 8 plus nedaplatin 20 mg/m 2 + 500 ml 0.9% sodium chloride injection intervenous drop infusion in day 1 with 21 days per cycle for 3 cycles. The objective response rate (ORR) and chemotherapy-associated toxicities were compared between the two groups. RESULTS: After 3 cycle chemotherapy, the ORR was 41.9% and 78.1% in the control and treatment group, respectively, with statistical difference (P < 0.05); The main chemotherapy-related toxicity were hematological toxicity and gastrointestinal reaction with no statistical difference between the two groups (P > 0.05). CONCLUSION: The ORR was relative high for gemcitabine plus nedaplatin in the treatment of advanced nasopharyngeal carcinoma with main toxicity of hematological toxicity and gastrointestinal reaction.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/patología , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma , Estudios de Casos y Controles , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Clasificación del Tumor , Estadificación de Neoplasias , Compuestos Organoplatinos/administración & dosificación , Resultado del Tratamiento , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA