Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2127-2143.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37098344

RESUMEN

Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.


Asunto(s)
Citocinas , Heridas y Lesiones , Animales , Ratones , Inmunidad Adaptativa , Quimiocinas , Epidermis , Inmunidad Innata , Heridas y Lesiones/inmunología
2.
Cell ; 184(13): 3361-3375, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34171319

RESUMEN

Surface epithelia provide a critical barrier to the outside world. Upon a barrier breach, resident epithelial and immune cells coordinate efforts to control infections and heal tissue damage. Inflammation can etch lasting marks within tissues, altering features such as scope and quality of future responses. By remembering inflammatory experiences, tissues are better equipped to quickly and robustly respond to barrier breaches. Alarmingly, in disease states, memory may fuel the inflammatory fire. Here, we review the cellular communication networks in barrier tissues and the integration between tissue-resident and recruited immune cells and tissue stem cells underlying tissue adaptation to environmental stress.


Asunto(s)
Adaptación Fisiológica , Inflamación/patología , Especificidad de Órganos , Animales , Humanos , Linfocitos/metabolismo , Modelos Biológicos , Células Madre
3.
Cell ; 182(6): 1377-1378, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946778

RESUMEN

Although oncogenic mutations predispose tissue stem cells to tumor initiation, the rate-limiting processes for stem cell immortalization remain unknown. In this issue of Cell, Bonnay et al. identify enhanced electron transport chain activity as a critical determinant of this process, establishing metabolic reprogramming as limiting for tumor initiation.


Asunto(s)
Transformación Celular Neoplásica , Células-Madre Neurales , Carcinogénesis , Humanos , Estrés Oxidativo
4.
Cell ; 177(5): 1172-1186.e14, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031009

RESUMEN

Our bodies are equipped with powerful immune surveillance to clear cancerous cells as they emerge. How tumor-initiating stem cells (tSCs) that form and propagate cancers equip themselves to overcome this barrier remains poorly understood. To tackle this problem, we designed a skin cancer model for squamous cell carcinoma (SCC) that can be effectively challenged by adoptive cytotoxic T cell transfer (ACT)-based immunotherapy. Using single-cell RNA sequencing (RNA-seq) and lineage tracing, we found that transforming growth factor ß (TGF-ß)-responding tSCs are superior at resisting ACT and form the root of tumor relapse. Probing mechanism, we discovered that during malignancy, tSCs selectively acquire CD80, a surface ligand previously identified on immune cells. Moreover, upon engaging cytotoxic T lymphocyte antigen-4 (CTLA4), CD80-expressing tSCs directly dampen cytotoxic T cell activity. Conversely, upon CTLA4- or TGF-ß-blocking immunotherapies or Cd80 ablation, tSCs become vulnerable, diminishing tumor relapse after ACT treatment. Our findings place tSCs at the crux of how immune checkpoint pathways are activated.


Asunto(s)
Traslado Adoptivo , Carcinoma de Células Escamosas/inmunología , Inmunidad Celular , Vigilancia Inmunológica , Células Madre Neoplásicas/inmunología , Neoplasias Cutáneas/inmunología , Linfocitos T/inmunología , Animales , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Línea Celular Tumoral , Humanos , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/inmunología , Células Madre Neoplásicas/patología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Linfocitos T/patología
5.
Immunity ; 57(5): 1071-1086.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38677291

RESUMEN

Following tissue damage, epithelial stem cells (SCs) are mobilized to enter the wound, where they confront harsh inflammatory environments that can impede their ability to repair the injury. Here, we investigated the mechanisms that protect skin SCs within this inflammatory environment. Characterization of gene expression profiles of hair follicle SCs (HFSCs) that migrated into the wound site revealed activation of an immune-modulatory program, including expression of CD80, major histocompatibility complex class II (MHCII), and CXC motif chemokine ligand 5 (CXCL5). Deletion of CD80 in HFSCs impaired re-epithelialization, reduced accumulation of peripherally generated Treg (pTreg) cells, and increased infiltration of neutrophils in wounded skin. Importantly, similar wound healing defects were also observed in mice lacking pTreg cells. Our findings suggest that upon skin injury, HFSCs establish a temporary protective network by promoting local expansion of Treg cells, thereby enabling re-epithelialization while still kindling inflammation outside this niche until the barrier is restored.


Asunto(s)
Antígeno B7-1 , Folículo Piloso , Inflamación , Piel , Células Madre , Linfocitos T Reguladores , Cicatrización de Heridas , Animales , Linfocitos T Reguladores/inmunología , Ratones , Cicatrización de Heridas/inmunología , Piel/inmunología , Piel/lesiones , Piel/patología , Células Madre/inmunología , Células Madre/metabolismo , Inflamación/inmunología , Folículo Piloso/inmunología , Antígeno B7-1/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Repitelización/inmunología , Movimiento Celular/inmunología , Proliferación Celular
6.
Cell ; 175(4): 908-920, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388451

RESUMEN

Stem cells regenerate tissues in homeostasis and under stress. By taking cues from their microenvironment or "niche," they smoothly transition between these states. Immune cells have surfaced as prominent members of stem cell niches across the body. Here, we draw parallels between different stem cell niches to explore the context-specific interactions that stem cells have with tissue-resident and recruited immune cells. We also highlight stem cells' innate ability to sense and respond to stress and the enduring memory that forms from such encounters. This fascinating crosstalk holds great promise for novel therapies in inflammatory diseases and regenerative medicine.


Asunto(s)
Células Madre/inmunología , Animales , Homeostasis , Humanos , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/patología , Nicho de Células Madre/inmunología
7.
Cell ; 169(3): 483-496.e13, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28413068

RESUMEN

Adult tissue stem cells (SCs) reside in niches, which, through intercellular contacts and signaling, influence SC behavior. Once activated, SCs typically give rise to short-lived transit-amplifying cells (TACs), which then progress to differentiate into their lineages. Here, using single-cell RNA-seq, we unearth unexpected heterogeneity among SCs and TACs of hair follicles. We trace the roots of this heterogeneity to micro-niches along epithelial-mesenchymal interfaces, where progenitors display molecular signatures reflective of spatially distinct local signals and intercellular interactions. Using lineage tracing, temporal single-cell analyses, and chromatin landscaping, we show that SC plasticity becomes restricted in a sequentially and spatially choreographed program, culminating in seven spatially arranged unilineage progenitors within TACs of mature follicles. By compartmentalizing SCs into micro-niches, tissues gain precise control over morphogenesis and regeneration: some progenitors specify lineages immediately, whereas others retain potency, preserving self-renewing features established early while progressively restricting lineages as they experience dynamic changes in microenvironment.


Asunto(s)
Células Madre Adultas/citología , Linaje de la Célula , Folículo Piloso/citología , Nicho de Células Madre , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Vía de Señalización Wnt
8.
Cell ; 169(4): 636-650.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28434617

RESUMEN

Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.


Asunto(s)
Carcinoma de Células Escamosas/patología , Linaje de la Célula , Células Epidérmicas , Folículo Piloso/citología , Neoplasias Cutáneas/patología , Piel/citología , Células Madre/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Epidermis/metabolismo , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Cutáneas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Trasplante Heterólogo , Cicatrización de Heridas
9.
Cell ; 164(1-2): 156-169, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771489

RESUMEN

Adult stem cell (SC) maintenance and differentiation are known to depend on signals received from the niche. Here, however, we demonstrate a mechanism for SC specification and regulation that is niche independent. Using immunofluorescence, live imaging, genetics, cell-cycle analyses, in utero lentiviral transduction, and lineage-tracing, we show that in developing hair buds, SCs are born from asymmetric divisions that differentially display WNT and SHH signaling. Displaced WNT(lo) suprabasal daughters become SCs that respond to paracrine SHH and symmetrically expand. By contrast, basal daughters remain WNT(hi). They express but do not respond to SHH and hence maintain slow-cycling, asymmetric divisions. Over time, they become short-lived progenitors, generating differentiating daughters rather than SCs. Thus, in contrast to an established niche that harbors a fixed SC pool whose expelled progeny differentiate, asymmetric divisions first specify and displace early SCs into an environment conducive to expansion and later restrict their numbers by switching asymmetric fates.


Asunto(s)
Folículo Piloso/citología , Proteínas Hedgehog/metabolismo , Ratones/embriología , Células Madre/citología , Células Madre/metabolismo , Vía de Señalización Wnt , Animales , División Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Folículo Piloso/metabolismo , Microscopía Fluorescente , Factor de Transcripción SOX9/metabolismo
10.
Cell ; 167(5): 1323-1338.e14, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863246

RESUMEN

Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.


Asunto(s)
Envejecimiento/fisiología , Subgrupos Linfocitarios/citología , Transducción de Señal , Cicatrización de Heridas , Animales , Interleucina-6/administración & dosificación , Queratinocitos/metabolismo , Ratones , Piel/citología , Fenómenos Fisiológicos de la Piel , Cicatrización de Heridas/efectos de los fármacos
11.
Cell ; 160(5): 963-976, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723170

RESUMEN

Subsets of long-lived, tumor-initiating stem cells often escape cancer therapies. However, sources and mechanisms that generate tumor heterogeneity and drug-resistant cell population are still unfolding. Here, we devise a functional reporter system to lineage trace and/or genetic ablate signaling in TGF-ß-activated squamous cell carcinoma stem cells (SCC-SCs). Dissecting TGF-ß's impact on malignant progression, we demonstrate that TGF-ß concentrating near tumor-vasculature generates heterogeneity in TGF-ß signaling at tumor-stroma interface and bestows slower-cycling properties to neighboring SCC-SCs. While non-responding progenies proliferate faster and accelerate tumor growth, TGF-ß-responding progenies invade, aberrantly differentiate, and affect gene expression. Intriguingly, TGF-ß-responding SCC-SCs show increased protection against anti-cancer drugs, but slower-cycling alone does not confer survival. Rather, TGF-ß transcriptionally activates p21, which stabilizes NRF2, thereby markedly enhancing glutathione metabolism and diminishing effectiveness of anti-cancer therapeutics. Together, these findings establish a surprising non-genetic paradigm for TGF-ß signaling in fueling heterogeneity in SCC-SCs, tumor characteristics, and drug resistance.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Resistencia a Antineoplásicos , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Cisplatino/uso terapéutico , Femenino , Perfilación de la Expresión Génica , Glutatión/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Factor 2 Relacionado con NF-E2 , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Acetato de Tetradecanoilforbol
12.
Nature ; 627(8003): 399-406, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448581

RESUMEN

Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.


Asunto(s)
Linfocitos B , Linfocitos T CD8-positivos , Comunicación Celular , Células Dendríticas , Células Epiteliales , Células T Auxiliares Foliculares , Linfocitos T Reguladores , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Comunicación Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Ligandos , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Células T Auxiliares Foliculares/citología , Células T Auxiliares Foliculares/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Centro Germinal/citología , Análisis de Expresión Génica de una Sola Célula , Células Epiteliales/citología , Células Epiteliales/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Especificidad de Órganos
13.
Nature ; 633(8029): 407-416, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39169186

RESUMEN

Billions of cells are eliminated daily from our bodies1-4. Although macrophages and dendritic cells are dedicated to migrating and engulfing dying cells and debris, many epithelial and mesenchymal tissue cells can digest nearby apoptotic corpses1-4. How these non-motile, non-professional phagocytes sense and eliminate dying cells while maintaining their normal tissue functions is unclear. Here we explore the mechanisms that underlie their multifunctionality by exploiting the cyclical bouts of tissue regeneration and degeneration during hair cycling. We show that hair follicle stem cells transiently unleash phagocytosis at the correct time and place through local molecular triggers that depend on both lipids released by neighbouring apoptotic corpses and retinoids released by healthy counterparts. We trace the heart of this dual ligand requirement to RARγ-RXRα, whose activation enables tight regulation of apoptotic cell clearance genes and provides an effective, tunable mechanism to offset phagocytic duties against the primary stem cell function of preserving tissue integrity during homeostasis. Finally, we provide functional evidence that hair follicle stem cell-mediated phagocytosis is not simply redundant with professional phagocytes but rather has clear benefits to tissue fitness. Our findings have broad implications for other non-motile tissue stem or progenitor cells that encounter cell death in an immune-privileged niche.


Asunto(s)
Apoptosis , Folículo Piloso , Fagocitosis , Células Madre , Folículo Piloso/citología , Folículo Piloso/metabolismo , Animales , Ratones , Células Madre/citología , Células Madre/metabolismo , Masculino , Femenino , Fagocitos/citología , Fagocitos/metabolismo , Homeostasis , Regeneración , Ligandos , Ratones Endogámicos C57BL
14.
Cell ; 157(4): 935-49, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813615

RESUMEN

Transit-amplifying cells (TACs) are an early intermediate in tissue regeneration. Here, using hair follicles (HFs) as a paradigm, we show that emerging TACs constitute a signaling center that orchestrates tissue growth. Whereas primed stem cells (SCs) generate TACs, quiescent SCs only proliferate after TACs form and begin expressing Sonic Hedgehog (SHH). TAC generation is independent of autocrine SHH, but the TAC pool wanes if they can't produce SHH. We trace this paradox to two direct actions of SHH: promoting quiescent-SC proliferation and regulating dermal factors that stoke TAC expansion. Ingrained within quiescent SCs' special sensitivity to SHH signaling is their high expression of GAS1. Without sufficient input from quiescent SCs, replenishment of primed SCs for the next hair cycle is compromised, delaying regeneration and eventually leading to regeneration failure. Our findings unveil TACs as transient but indispensable integrators of SC niche components and reveal an intriguing interdependency of primed and quiescent SC populations on tissue regeneration.


Asunto(s)
Folículo Piloso/citología , Cabello/citología , Cabello/fisiología , Nicho de Células Madre , Células Madre/citología , Animales , Proliferación Celular , Folículo Piloso/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Regeneración , Transducción de Señal , Células Madre/metabolismo
15.
Genes Dev ; 35(3-4): 199-211, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526586

RESUMEN

Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.


Asunto(s)
Dieta , Células Madre/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Ayuno/fisiología , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Células Madre/microbiología , Células Madre/parasitología , Estrés Fisiológico/fisiología
18.
Nature ; 607(7918): 249-255, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831602

RESUMEN

Our body has a remarkable ability to remember its past encounters with allergens, pathogens, wounds and irritants, and to react more quickly to the next experience. This accentuated sensitivity also helps us to cope with new threats. Despite maintaining a state of readiness and broadened resistance to subsequent pathogens, memories can also be maladaptive, leading to chronic inflammatory disorders and cancers. With the ever-increasing emergence of new pathogens, allergens and pollutants in our world, the urgency to unravel the molecular underpinnings of these phenomena has risen to new heights. Here we reflect on how the field of inflammatory memory has evolved, since 2007, when researchers realized that non-specific memory is contained in the nucleus and propagated at the epigenetic level. We review the flurry of recent discoveries revealing that memory is not just a privilege of the immune system but also extends to epithelia of the skin, lung, intestine and pancreas, and to neurons. Although still unfolding, epigenetic memories of inflammation have now been linked to possible brain disorders such as Alzheimer disease, and to an elevated risk of cancer. In this Review, we consider the consequences-good and bad-of these epigenetic memories and their implications for human health and disease.


Asunto(s)
Adaptación Fisiológica , Epigénesis Genética , Salud , Inflamación , Adaptación Fisiológica/genética , Enfermedad de Alzheimer/genética , Humanos , Memoria Inmunológica , Inflamación/genética , Neoplasias/genética
19.
Nature ; 612(7940): 555-563, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450983

RESUMEN

Squamous cell carcinomas are triggered by marked elevation of RAS-MAPK signalling and progression from benign papilloma to invasive malignancy1-4. At tumour-stromal interfaces, a subset of tumour-initiating progenitors, the cancer stem cells, obtain increased resistance to chemotherapy and immunotherapy along this pathway5,6. The distribution and changes in cancer stem cells during progression from a benign state to invasive squamous cell carcinoma remain unclear. Here we show in mice that, after oncogenic RAS activation, cancer stem cells rewire their gene expression program and trigger self-propelling, aberrant signalling crosstalk with their tissue microenvironment that drives their malignant progression. The non-genetic, dynamic cascade of intercellular exchanges involves downstream pathways that are often mutated in advanced metastatic squamous cell carcinomas with high mutational burden7. Coupling our clonal skin HRASG12V mouse model with single-cell transcriptomics, chromatin landscaping, lentiviral reporters and lineage tracing, we show that aberrant crosstalk between cancer stem cells and their microenvironment triggers angiogenesis and TGFß signalling, creating conditions that are conducive for hijacking leptin and leptin receptor signalling, which in turn launches downstream phosphoinositide 3-kinase (PI3K)-AKT-mTOR signalling during the benign-to-malignant transition. By functionally examining each step in this pathway, we reveal how dynamic temporal crosstalk with the microenvironment orchestrated by the stem cells profoundly fuels this path to malignancy. These insights suggest broad implications for cancer therapeutics.


Asunto(s)
Carcinoma de Células Escamosas , Genes ras , Células Madre Neoplásicas , Transducción de Señal , Microambiente Tumoral , Proteínas ras , Animales , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Leptina/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neovascularización Patológica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
20.
Genes Dev ; 34(23-24): 1713-1734, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184221

RESUMEN

Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/genética , Melanocitos/citología , Transducción de Señal/genética , Células Madre/citología , Animales , Linaje de la Célula/genética , Perfilación de la Expresión Génica , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA