Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(9): e23154, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37606581

RESUMEN

Skeletal muscle is a highly plastic tissue, adapting its structure and metabolism in response to diverse conditions such as contractile activity, nutrients, and diseases. Finding a novel master regulator of muscle mass and quality will provide new therapeutic targets for the prevention and treatment of muscle weakness. Musashi is an RNA-binding protein that dynamically regulates protein expression; it was originally discovered as a cell fate determination factor in neural cells. Here, we report that Musashi-2 (Msi2) is dominantly expressed in slow-type muscle fibers, fibers characterized by high metabolism and endurance. Msi2 knockout (KO) mice exhibited a decrease in both soleus myofiber size and number compared to control mice. Biochemical and histological analyses revealed that type IIa fibers, which are of the fast type but have high metabolic capacity, were decreased in Msi2 KO mice. The contraction force of isolated soleus muscle was lower in KO mice, and the expression of the metabolic proteins, cytochrome c oxidase and myoglobin, was also decreased in KO muscle. Our data demonstrate the critical role of Msi2 in the maintenance of normal fiber-type composition and metabolism.


Asunto(s)
Fibras Musculares Esqueléticas , Atrofia Muscular , Animales , Ratones , Atrofia Muscular/genética , Músculo Esquelético , Nutrientes , Complejo IV de Transporte de Electrones/genética , Ratones Noqueados
2.
Biochem Biophys Res Commun ; 639: 169-175, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36521377

RESUMEN

Myokines, secreted factors from skeletal muscle, act locally on muscle cells or satellite cells, which is important in regulating muscle mass and function. Here, we found platelet-derived growth factor subunit B (PDGF-B) is constitutively secreted from muscle cells without muscle contraction. Furthermore, PDGF-B secretion increased with myoblast to myotube differentiation. To examine the role of PDGF-B as a paracrine or autocrine myokine, myoblasts or myotubes were treated with PDGF-B. As a result, myoblast proliferation was significantly enhanced via several signaling pathways. Intriguingly, myotubes treated with PDGF-B showed enhanced maturation as indicated by their increased myotube diameter, myosin heavy chain expression, and strengthened contractile force. These findings suggest that PDGF-B is constitutively secreted by myokines to enhance myoblast proliferation and myotube maturation, which may contribute to skeletal muscle regeneration.


Asunto(s)
Fibras Musculares Esqueléticas , Células Satélite del Músculo Esquelético , Diferenciación Celular/fisiología , Proliferación Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Transducción de Señal , Animales , Ratones
3.
Biosci Biotechnol Biochem ; 86(6): 730-738, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35285857

RESUMEN

Muscle atrophy is a major health problem that needs effective prevention and treatment approaches. Chronic exercise, an effective treatment strategy for atrophy, promotes muscle hypertrophy, which leads to dynamic metabolic changes; however, the metabolic changes vary among myofiber types. To investigate local metabolic changes due to chronic exercise, we utilized comprehensive proteome and mass spectrometry (MS) imaging analyses. Our training model exhibited hypertrophic features only in glycolytic myofibers. The proteome analyses demonstrated that exercise promoted anabolic pathways, such as protein synthesis, and significant changes in lipid metabolism, but not in glucose metabolism. Furthermore, the fundamental energy sources, glycogen, neutral lipids, and ATP, were sensitive to exercise, and the changes in these sources differed between glycolytic and oxidative myofibers. MS imaging revealed that the lipid composition differs among myofibers; arachidonic acid might be an effective target for promoting lipid metabolism during muscle hypertrophy in oxidative myofibers.


Asunto(s)
Músculo Esquelético , Proteoma , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Espectrometría de Masas , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteoma/metabolismo
4.
EMBO Rep ; 20(11): e47957, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31524320

RESUMEN

In this study, we identified a previously uncharacterized skeletal satellite cell-secreted protein, R3h domain containing-like (R3hdml). Expression of R3hdml increases during skeletal muscle development and differentiation in mice. Body weight and skeletal muscle mass of R3hdml knockout (KO) mice are lower compared to control mice. Expression levels of cell cycle-related markers, phosphorylation of Akt, and expression of insulin-like growth factor within the skeletal muscle are reduced in R3hdml KO mice compared to control mice. Expression of R3hdml increases during muscle regeneration in response to cardiotoxin (CTX)-induced muscle injury. Recovery of handgrip strength after CTX injection was significantly impaired in R3hdml KO mice, which is rescued by R3hdml. Our results indicate that R3hdml is required for skeletal muscle development, regeneration, and, in particular, satellite cell proliferation and differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores , Proliferación Celular , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración , Transducción de Señal
5.
FASEB J ; 32(3): 1452-1467, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29146735

RESUMEN

DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.


Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/biosíntesis , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Factor 5 de Diferenciación de Crecimiento/genética , Ratones Noqueados , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología
6.
Rapid Commun Mass Spectrom ; 33(2): 185-192, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30367536

RESUMEN

RATIONALE: In skeletal muscles, there are four myofiber types, Types I, IIa, IIx, and IIb, which show different contraction characteristics and have different metabolic statuses. To understand muscle function, it is necessary to analyze myofiber-specific metabolic changes. However, these fibers are heterogeneous and are hard to discriminate by conventional analyses using tissue extracts. In this study, we found myofiber-specific molecules and molecular markers of other cells such as smooth muscle cells, fat cells, and motor neurons, and visualized them within muscle sections. METHODS: We used three different muscle tissues, namely extensor digitorum longus, soleus, and gastrocnemius tissues, from ICR mice. After the muscles had been harvested, cross-sections were prepared using a cryostat and analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), and conventional immunofluorescence imaging. RESULTS: By comparing the MALDI MSI results with the immunofluorescence imaging results, we were able to identify each fiber and cell-specific ion. It was especially important that we could find Type IIa and IIb specific ions, because these were difficult to distinguish. CONCLUSIONS: Through MSI analyses, we performed a comprehensive survey to identify cell- and myofiber-specific molecular markers. In conclusion, we assigned muscle fiber Type I, IIa, and IIb-specific molecular ions at m/z 856.6, 872.6, and 683.8, respectively. These molecular markers might be useful for verifying changes that occur due to exercise and/or disease.


Asunto(s)
Biomarcadores/análisis , Fibras Musculares Esqueléticas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Biomarcadores/metabolismo , Cromatografía en Capa Delgada , Diglicéridos/análisis , Diglicéridos/metabolismo , Procesamiento de Imagen Asistido por Computador , Lípidos/análisis , Masculino , Ratones Endogámicos ICR , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Liso/química , Músculo Liso/metabolismo , Espectrometría de Masas en Tándem
7.
Biosci Biotechnol Biochem ; 83(10): 1851-1857, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31159662

RESUMEN

Several food constituents augment exercise-induced muscle strength improvement; however, the detailed mechanism underlying these combined effects is unknown because of the lack of a cultured cell model for evaluating the contraction-induced muscle protein synthesis level. Here, we aimed to establish a new in vitro muscle contraction model for analyzing the activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. We adopted the tetanic electric stimulation of 50 V at 100 Hz for 10 min in L6.C11 myotubes. Akt, ERK1/2, and p70S6K phosphorylation increased significantly after electrical pulse stimulation (EPS), compared to untreated cells. Next, we used this model to analyze mTORC1 signaling in combination with exercise and beta-hydroxy-beta-methylbutyrate (HMB), an l-leucine metabolite. p70S6K phosphorylation increased significantly in the EPS+HMB group compared to that in the EPS-alone group. These findings show that our model could be used to analyze mTORC1 signaling and that HMB enhances muscle contraction-activated mTORC1 signaling.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/efectos de los fármacos , Transducción de Señal , Valeratos/administración & dosificación , Animales , Línea Celular , Estimulación Eléctrica , Técnicas In Vitro , L-Lactato Deshidrogenasa/metabolismo , Contracción Muscular , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Músculo Esquelético/fisiología , Ratas
8.
Biosci Biotechnol Biochem ; 81(2): 335-342, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27771987

RESUMEN

Skeletal muscle is an important organ for controlling the development of type 2 diabetes. We discovered Panax notoginseng roots as a candidate to improve hyperglycemia through in vitro muscle cells screening test. Saponins are considered as the active ingredients of ginseng. However, in the body, saponins are converted to dammarane-type triterpenes, which may account for the anti-hyperglycemic activity. We developed a method for producing a dammarane-type triterpene extract (DTE) from Panax notoginseng roots and investigated the extract's potential anti-hyperglycemic activity. We found that DTE had stronger suppressive activity on blood glucose levels than the saponin extract (SE) did in KK-Ay mice. Additionally, DTE improved oral glucose tolerance, insulin sensitivity, glucose uptake, and Akt phosphorylation in skeletal muscle. These results suggest that DTE is a promising agent for controlling hyperglycemia by enhancing glucose uptake in skeletal muscle.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/tratamiento farmacológico , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Panax notoginseng/química , Raíces de Plantas/química , Triterpenos/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Dieta , Hiperglucemia/sangre , Hiperglucemia/metabolismo , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/farmacología , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Saponinas/aislamiento & purificación , Saponinas/farmacología , Triterpenos/aislamiento & purificación , Triterpenos/uso terapéutico , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Damaranos
9.
J Am Soc Nephrol ; 27(10): 3035-3050, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26940099

RESUMEN

Diabetes is manifested predominantly in males in experimental models, and compelling evidence suggests that 17ß-estradiol (E2) supplementation improves hyperglycemia in humans. We previously generated a severely diabetic transgenic (Tg) mouse model by ß-cell­specific overexpression of inducible cAMP early repressor (ICER) and found that male but not female ICER-Tg mice exhibit sustained hyperglycemia and develop major clinical and pathologic features of human diabetic nephropathy (DN). Thus, we hypothesized that differences in circulating hormone levels have a key role in determining susceptibility to diabetes. Here, we examined whether DN in male ICER-Tg mice is rescued by adjusting the androgen-to-E2 ratio to approximate that in normoglycemic female ICER-Tg mice. We treated hyperglycemic male ICER-Tg mice with orchiectomy (ORX), E2 pellet implantation, or both. E2 pellet implantation at an early stage of DN with or without ORX caused a rapid drop in blood glucose and a dramatic increase in ß-cell number, and it markedly inhibited DN progression [namely, E2 reduced glomerulosclerosis, collagen 4 deposition and albuminuria, and prevented hyperfiltration]. Furthermore, E2 pellet implantation was more effective than ORX alone and induced a remarkable improvement, even when initiated at advanced-stage DN. In contrast, induction of normoglycemia by islet transplant in ICER-Tg mice eliminated albuminuria but was less effective than E2 + ORX in reducing glomerulosclerosis, collagen 4 deposition, and hyperfiltration. These findings indicate that E2 treatment is effective, even after establishment of DN, whereas glucose normalization alone does not improve sclerotic lesions. We propose that E2 intervention is a potential therapeutic option for DN.


Asunto(s)
Andrógenos/sangre , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/etiología , Estradiol/sangre , Animales , Glucemia/análisis , Masculino , Ratones , Ratones Transgénicos
10.
Anal Biochem ; 497: 36-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26548957

RESUMEN

To construct an in vitro contraction model with the primary cultured myotubes, we isolated satellite cells from the mouse extensor digitorum longus. Differentiated myotubes possessed a greater number of sarcomere assemblies and higher expression levels of myosin heavy chain, cytochrome c oxidase IV, and myoglobin than in C2C12 myotubes. In agreement with these results regarding the sarcomere assemblies and protein expressions, the primary myotubes showed higher contractile activity stimulated by the electric pulses than that in the C2C12 myotubes. These data suggest that mouse primary myotubes will be a valuable research tool as an in vitro muscle contraction model.


Asunto(s)
Contracción Muscular , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/fisiología , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Complejo IV de Transporte de Electrones/análisis , Ratones , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/citología , Músculo Esquelético/ultraestructura , Mioglobina/análisis , Cadenas Pesadas de Miosina/análisis , Sarcómeros/ultraestructura
11.
Mol Cell Biochem ; 411(1-2): 173-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26458561

RESUMEN

The main function of annexin A1 (ANXA1), a member of the annexin superfamily, is to bind to cellular membranes in a Ca(2+)-dependent manner. In skeletal muscle, ANXA1 is thought to be involved in the repair of damaged membrane tissue and in the migration of muscle cells. We hypothesized that ANXA1 is one of the myokines secreted during muscle contractions to accelerate the repair of cell damage after contraction. Here we performed cell contractions by electric pulse stimulation; the results revealed that a fragmented form of ANXA1 was cleaved by calpain and selectively secreted from skeletal muscle cells by contraction. We therefore realized that muscle-contraction-induced calpain-dependent ANXA1 fragmentation has a wound-healing effect on damaged cells. This suggested that not the intact form but rather fragmented ANXA1 is a contraction-induced myokine.


Asunto(s)
Anexina A1/metabolismo , Electricidad , Fibras Musculares Esqueléticas/metabolismo , Animales , Anexina A1/química , Línea Celular , Espectrometría de Masas , Ratones , Cicatrización de Heridas
12.
Biosci Biotechnol Biochem ; 80(11): 2224-2230, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27429207

RESUMEN

There is a growing demand for a system in the field of sarcopenia and diabetes research that could be used to evaluate the effects of functional food ingredients that enhance muscle mass/contractile force or muscle glucose uptake. In this study, we developed a new type of in vitro muscle incubation system that systemizes an apparatus for muscle incubation, using an electrode, a transducer, an incubator, and a pulse generator in a compact design. The new system enables us to analyze the muscle force stimulated by the electric pulses and glucose uptake during contraction and it may thus be a useful tool for analyzing the metabolic changes that occur during muscle contraction. The system may also contribute to the assessments of new food ingredients that act directly on skeletal muscle in the treatment of sarcopenia and diabetes.

13.
Biochim Biophys Acta ; 1837(10): 1699-706, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24882639

RESUMEN

Carnitine is well recognized as a key regulator of long-chain fatty acyl group translocation into the mitochondria. In addition, carnitine, as acetylcarnitine, acts as an acceptor of excess acetyl-CoA, a potent inhibitor of pyruvate dehydrogenase. Here, we provide a new methodology for accurate quantification of acetylcarnitine content and determination of its localization in skeletal muscles. We used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to visualize acetylcarnitine distribution in rat skeletal muscles. MALDI-IMS and immunohistochemistry of serial cross-sections showed that acetylcarnitine was enriched in the slow-type muscle fibers. The concentration of ATP was lower in muscle regions with abundant acetylcarnitine, suggesting a relationship between acetylcarnitine and metabolic activity. Using our novel method, we detected an increase in acetylcarnitine content after muscle contraction. Importantly, this increase was not detected using traditional biochemical assays of homogenized muscles. We also demonstrated that acetylation of carnitine during muscle contraction was concomitant with glycogen depletion. Our methodology would be useful for the quantification of acetylcarnitine and its contraction-induced kinetics in skeletal muscles.


Asunto(s)
Acetilcarnitina/metabolismo , Carnitina/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Masculino , Músculo Esquelético/fisiología , Ratas , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
14.
Biochem Biophys Res Commun ; 444(4): 496-501, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24472542

RESUMEN

Skeletal muscle is a primary organ that uses blood glucose. Insulin- and 5'AMP-activated protein kinase (AMPK)-regulated intracellular signaling pathways are known as major mechanisms that regulate muscle glucose transport. It has been reported that macrophage migration inhibitory factor (MIF) is secreted from adipose tissue and heart, and affects these two pathways. In this study, we examined whether MIF is a myokine that is secreted from skeletal muscles and affects muscle glucose transport induced by these two pathways. We found that MIF is expressed in several different types of skeletal muscle. Its secretion was also confirmed in C2C12 myotubes, a skeletal muscle cell line. Next, the extensor digitorum longus (EDL) and soleus muscles were isolated from mice and treated with recombinant MIF in an in vitro muscle incubation system. MIF itself did not have any effect on glucose transport in both types of muscles. However, glucose transport induced by a submaximal dose of insulin was diminished by co-incubation with MIF in the soleus muscle. MIF also diminished glucose transport induced by a maximal dose of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), an AMPK activator, in the EDL muscle. These results suggest that MIF is a negative regulator of insulin- and AICAR-induced glucose transport in skeletal muscle. Since MIF secretion from C2C12 myotubes to the culture medium decreased during contraction evoked by electrical stimulations, MIF may be involved in the mechanisms underlying exercise-induced sensitization of glucose transport in skeletal muscle.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Femenino , Hipoglucemiantes/farmacología , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Ribonucleótidos/farmacología , Transducción de Señal
15.
Biochem Biophys Res Commun ; 430(2): 676-82, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23211597

RESUMEN

We evaluated the effect of chronic exercise on insulin secretion in response to high-glucose by using a perifusion method with isolated pancreatic islets from normal rats. Male Wistar rats were assigned to one of two groups: a sedentary group and a trained group. Running exercise was carried out on a treadmill for one hour per day, five days per week, for six, nine, or 12 weeks. The chronic exercise significantly enhanced the insulin secretion ability of pancreatic islets in response to the high-glucose stimulation upon nine and 12 weeks of exercise. The insulin content in the pancreas and the weight of the pancreas did not change upon nine weeks of exercise. Potassium-stimulated insulin secretion was also increased in the islets isolated from rats that trained for nine weeks compared with that in sedentary rats, suggesting that insulin secretion events downstream of membrane depolarization are involved in targets of the exercise effect. These findings suggest that chronic exercise could be a useful strategy not only for the maintenance of peripheral insulin sensitivity but also for the promotion of islet function to secrete insulin in non-diabetics.


Asunto(s)
Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Condicionamiento Físico Animal , Animales , Prueba de Esfuerzo , Glucosa/administración & dosificación , Insulina/administración & dosificación , Secreción de Insulina , Masculino , Potasio/administración & dosificación , Ratas , Ratas Wistar , Conducta Sedentaria
16.
Heliyon ; 9(4): e15281, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37096007

RESUMEN

Carnitine plays multiple roles in skeletal muscle metabolism, including fatty acid transport and buffering of excess acetyl-CoA in the mitochondria. The skeletal muscle cannot synthesize carnitine; therefore, carnitine must be taken up from the blood into the cytoplasm. Carnitine metabolism, its uptake into cells, and the subsequent reactions of carnitine are accelerated by muscle contraction. Isotope tracing enables the marking of target molecules and monitoring of tissue distribution. In this study, stable isotope-labeled carnitine tracing was combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging to determine carnitine distribution in mouse skeletal muscle tissues. Deuterium-labeled carnitine (d3-carnitine) was intravenously injected into the mice and diffused to the skeletal muscles for 30 and 60 min. To examine whether muscle contraction changes the distribution of carnitine and its derivatives, unilateral in situ muscle contraction was performed; 60 min muscle contraction showed increased d3-carnitine and its derivative d3-acetylcarnitine in the muscle, indicating that carnitine uptake in cells is promptly converted to acetylcarnitine, consequently, buffering accumulated acetyl-CoA. While the endogenous carnitine was localized in the slow type fibers rather than fast type, the contraction-induced distributions of d3-carnitine and acetylcarnitine were not necessarily associated with muscle fiber type. In conclusion, the combination of isotope tracing and MALDI-MS imaging can reveal carnitine flux during muscle contraction and show the significance of carnitine in skeletal muscles.

17.
Anal Bioanal Chem ; 403(7): 1863-71, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22349342

RESUMEN

Lipids in skeletal muscle play a fundamental role both in normal muscle metabolism and in disease states. Skeletal muscle lipid accumulation is associated with several chronic metabolic disorders, including obesity, insulin resistance, and type 2 diabetes. However, it is poorly understood whether the lipid composition of skeletal muscle changes by contraction, due to the complexity of lipid molecular species. In this study, we used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to investigate changes in skeletal muscle lipid composition induced by contraction. We successfully observed the reduction of diacylglycerol and triacylglycerol, which are generally associated with muscle contraction. Interestingly, we found the accumulation of some saturated and mono-unsaturated fatty acids and poly-unsaturated fatty acids containing phosphatidylcholine in contracted muscles. Moreover, the distributions of several types of lipid were changed by contraction. Our results show that changes in the lipid amount, lipid composition, and energy metabolic activity can be evaluated in each local spot of cells and tissues at the same time using MALDI-IMS. In conclusion, MALDI-IMS is a powerful tool for studying lipid changes associated with contractions.


Asunto(s)
Lípidos/análisis , Músculo Esquelético/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Lípidos/química , Masculino , Ratones , Ratones Endogámicos ICR , Espectrometría de Masas en Tándem
18.
Sci Rep ; 12(1): 13818, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970858

RESUMEN

Muscle weakness is detrimental not only to quality of life but also life expectancy. However, effective drugs have still not been developed to improve and prevent muscle weakness associated with aging or diseases. One reason for the delay in drug discovery is that no suitable in vitro screening system has been established to test whether drugs improve muscle strength. Here, we used a specific deformable silicone gel substrate to effectively and sensitively evaluate the contractile force generated by myotubes from wrinkles formed on the substrate. Using this system, it was found that the contractile force generated by an atrophic phenotype of myotubes induced by dexamethasone or cancer cell-conditioned medium treatment significantly decreased while that generated by hypertrophic myotubes induced by insulin-like growth factor-1 significantly increased. Notably, it was found that changes in the index related to contractile force can detect atrophic or hypertrophic phenotypes more sensitively than changes in myotube diameter or myosin heavy chain expression, both commonly used to evaluate myotube function. These results suggest that our proposed system will be an effective tool for assessing the contractile force-related state of myotubes, which are available for the development of drugs to prevent and/or treat muscle weakness.


Asunto(s)
Debilidad Muscular , Calidad de Vida , Humanos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Debilidad Muscular/metabolismo , Cadenas Pesadas de Miosina/metabolismo
19.
Sci Rep ; 12(1): 13020, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906363

RESUMEN

Muscle fibres are broadly categorised into types I and II; the fibre-type ratio determines the contractile and metabolic properties of skeletal muscle tissue. The maintenance of type I fibres is essential for the prevention of obesity and the treatment of muscle atrophy caused by type 2 diabetes or unloading. Some reports suggest that myokines are related to muscle fibre type determination. We thus explored whether a myokine determines whether satellite cells differentiate to type I fibres. By examining the fibre types separately, we identified R-spondin 3 (Rspo3) as a myokine of interest, a secreted protein known as an activator of Wnt signalling pathways. To examine whether Rspo3 induces type I fibres, primary myoblasts prepared from mouse soleus muscles were exposed to a differentiation medium containing the mouse recombinant Rspo3 protein. Expression of myosin heavy chain (MyHC) I, a marker of type I fibre, significantly increased in the differentiated myotubes compared with a control. The Wnt/ß-catenin pathway was shown to be the dominant signalling pathway which induces Rspo3-induced MyHC I expression. These results revealed Rspo3 as a myokine that determines whether satellite cells differentiate to type I fibres.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Trombospondinas/metabolismo
20.
Front Cell Dev Biol ; 9: 640399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732705

RESUMEN

Glucose is a major energy source consumed by proliferating mammalian cells. Therefore, in general, proliferating cells have the preference of high glucose contents in extracellular environment. Here, we showed that high glucose concentrations impede the proliferation of satellite cells, which are muscle-specific stem cells, under adherent culture conditions. We found that the proliferation activity of satellite cells was higher in glucose-free DMEM growth medium (low-glucose medium with a glucose concentration of 2 mM) than in standard glucose DMEM (high-glucose medium with a glucose concentration of 19 mM). Satellite cells cultured in the high-glucose medium showed a decreased population of reserve cells, identified by staining for Pax7 expression, suggesting that glucose concentration affects cell fate determination. In conclusion, glucose is a factor that decides the cell fate of skeletal muscle-specific stem cells. Due to this unique feature of satellite cells, hyperglycemia may negatively affect the regenerative capability of skeletal muscle myofibers and thus facilitate sarcopenia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA