Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37264926

RESUMEN

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/metabolismo , Inflamación , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373404

RESUMEN

Up until recently, methods for generating floxed mice either conventionally or by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9 (CRISPR-associated protein 9) editing have been technically challenging, expensive and error-prone, or time-consuming. To circumvent these issues, several labs have started successfully using a small artificial intron to conditionally knockout (KO) a gene of interest in mice. However, many other labs are having difficulty getting the technique to work. The key problem appears to be either a failure in achieving correct splicing after the introduction of the artificial intron into the gene or, just as crucial, insufficient functional KO of the gene's protein after Cre-induced removal of the intron's branchpoint. Presented here is a guide on how to choose an appropriate exon and where to place the recombinase-regulated artificial intron (rAI) in that exon to prevent disrupting normal gene splicing while maximizing mRNA degradation after recombinase treatment. The reasoning behind each step in the guide is also discussed. Following these recommendations should increase the success rate of this easy, new, and alternative technique for producing tissue-specific KO mice.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Ratones Noqueados , Intrones/genética , Recombinasas/genética
3.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682810

RESUMEN

Cultured mammalian cells have been shown to respond to microgravity (µG), but the molecular mechanism is still unknown. The study we report here is focused on molecular and cellular events that occur within a short period of time, which may be related to gravity sensing by cells. Our assumption is that the gravity-sensing mechanism is activated as soon as cells are exposed to any new gravitational environment. To study the molecular events, we exposed cells to simulated µG (SµG) for 15 min, 30 min, 1 h, 2 h, 4 h, and 8 h using a three-dimensional clinostat and made cell lysates, which were then analyzed by reverse phase protein arrays (RPPAs) using a panel of 453 different antibodies. By comparing the RPPA data from cells cultured at 1G with those of cells under SµG, we identified a total of 35 proteomic changes in the SµG samples and found that 20 of these changes took place, mostly transiently, within 30 min. In the 4 h and 8 h samples, there were only two RPPA changes, suggesting that the physiology of these cells is practically indistinguishable from that of cells cultured at 1 G. Among the proteins involved in the early proteomic changes were those that regulate cell motility and cytoskeletal organization. To see whether changes in gravitational environment indeed activate cell motility, we flipped the culture dish upside down (directional change in gravity vector) and studied cell migration and actin cytoskeletal organization. We found that compared with cells grown right-side up, upside-down cells transiently lost stress fibers and rapidly developed lamellipodia, which was supported by increased activity of Ras-related C3 botulinum toxin substrate 1 (Rac1). The upside-down cells also increased their migratory activity. It is possible that these early molecular and cellular events play roles in gravity sensing by mammalian cells. Our study also indicated that these early responses are transient, suggesting that cells appear to adapt physiologically to a new gravitational environment.


Asunto(s)
Actinas , Ingravidez , Actinas/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Mamíferos/metabolismo , Proteómica
4.
Circulation ; 141(1): 42-66, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31887080

RESUMEN

BACKGROUND: Sporadic aortic aneurysm and dissection (AAD), caused by progressive aortic smooth muscle cell (SMC) loss and extracellular matrix degradation, is a highly lethal condition. Identifying mechanisms that drive aortic degeneration is a crucial step in developing an effective pharmacologic treatment to prevent disease progression. Recent evidence has indicated that cytosolic DNA and abnormal activation of the cytosolic DNA sensing adaptor STING (stimulator of interferon genes) play a critical role in vascular inflammation and destruction. Here, we examined the involvement of this mechanism in aortic degeneration and sporadic AAD formation. METHODS: The presence of cytosolic DNA in aortic cells and activation of the STING pathway were examined in aortic tissues from patients with sporadic ascending thoracic AAD. The role of STING in AAD development was evaluated in Sting-deficient (Stinggt/gt) mice in a sporadic AAD model induced by challenging mice with a combination of a high-fat diet and angiotensin II. We also examined the direct effects of STING on SMC death and macrophage activation in vitro. RESULTS: In human sporadic AAD tissues, we observed the presence of cytosolic DNA in SMCs and macrophages and significant activation of the STING pathway. In the sporadic AAD model, Stinggt/gt mice showed significant reductions in challenge-induced aortic enlargement, dissection, and rupture in both the thoracic and abdominal aortic regions. Single-cell transcriptome analysis revealed that aortic challenge in wild-type mice induced the DNA damage response, the inflammatory response, dedifferentiation and cell death in SMCs, and matrix metalloproteinase expression in macrophages. These changes were attenuated in challenged Stinggt/gt mice. Mechanistically, nuclear and mitochondrial DNA damage in SMCs and the subsequent leak of DNA to the cytosol activated STING signaling, which induced cell death through apoptosis and necroptosis. In addition, DNA from damaged SMCs was engulfed by macrophages in which it activated STING and its target interferon regulatory factor 3, which directly induced matrix metalloproteinase-9 expression. We also found that pharmacologically inhibiting STING activation partially prevented AAD development. CONCLUSIONS: Our findings indicate that the presence of cytosolic DNA and subsequent activation of cytosolic DNA sensing adaptor STING signaling represent a key mechanism in aortic degeneration and that targeting STING may prevent sporadic AAD development.


Asunto(s)
Disección Aórtica/metabolismo , Rotura de la Aorta/metabolismo , Citosol/metabolismo , ADN/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Disección Aórtica/genética , Disección Aórtica/patología , Animales , Rotura de la Aorta/genética , Rotura de la Aorta/patología , Citosol/patología , ADN/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados
5.
Circulation ; 139(9): 1199-1216, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30586719

RESUMEN

BACKGROUND: The incidence of cardiovascular disease is higher in HIV-positive (HIV+) patients than it is in the average population, and combination antiretroviral therapy (cART) is a recognized risk factor for cardiovascular disease. However, the molecular mechanisms that link cART and cardiovascular disease are currently unknown. Our study explores the role of the activation of p90RSK, a reactive oxygen species-sensitive kinase, in engendering senescent phenotype in macrophages and accelerating atherogenesis in patients undergoing cART. METHODS: Peripheral whole blood from cART-treated HIV+ individuals and nontreated HIV-negative individuals was treated with H2O2 (200 µmol/L) for 4 minutes, and p90RSK activity in CD14+ monocytes was measured. Plaque formation in the carotids was also analyzed in these individuals. Macrophage senescence was determined by evaluating their efferocytotic ability, antioxidation-related molecule expression, telomere length, and inflammatory gene expression. The involvement of p90RSK-NRF2 signaling in cART-induced senescence was assessed by p90RSK-specific inhibitor (FMK-MEA) or dominant-negative p90RSK (DN-p90RSK) and NRF2 activator (NRF2A). Further, the severity of atherosclerosis was determined in myeloid cell-specific wild-type and DN-p90RSK transgenic mice. RESULTS: Monocytes from HIV+ patients exhibited higher levels of p90RSK activity and were also more sensitive to reactive oxygen species than monocytes from HIV-negative individuals. A multiple linear regression analysis involving cART, Reynolds cardiovascular risk score, and basal p90RSK activity revealed that cART and basal p90RSK activity were the 2 significant determinants of plaque formation. Many of the antiretroviral drugs individually activated p90RSK, which simultaneously triggered all components of the macrophage senescent phenotype. cART inhibited antioxidant response element reporter activity via ERK5 S496 phosphorylation. NRF2A reversed the H2O2-induced overactivation of p90RSK in cART-treated macrophages by countering the induction of senescent phenotype. Last, the data obtained from our gain- or loss-of-function mice conclusively showed the crucial role of p90RSK in inducing senescent phenotype in macrophages and atherogenesis. CONCLUSIONS: cART increased monocyte/macrophage sensitivity to reactive oxygen species- in HIV+ individuals by suppressing NRF2-ARE activity via p90RSK-mediated ERK5 S496 phosphorylation, which coordinately elicited senescent phenotypes and proinflammatory responses. As such, our report underscores the importance of p90RSK regulation in monocytes/macrophages as a viable biomarker and therapeutic target for preventing cardiovascular disease, especially in HIV+ patients treated with cART.


Asunto(s)
Senescencia Celular , Seropositividad para VIH/metabolismo , VIH-1 , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Antirretrovirales/administración & dosificación , Femenino , Seropositividad para VIH/tratamiento farmacológico , Seropositividad para VIH/genética , Seropositividad para VIH/patología , Humanos , Macrófagos/patología , Masculino , Ratones , Factor 2 Relacionado con NF-E2/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética
6.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561588

RESUMEN

Multiple unique environmental factors such as space radiation and microgravity (µG) pose a serious threat to human gene stability during space travel. Recently, we reported that simultaneous exposure of human fibroblasts to simulated µG and radiation results in more chromosomal aberrations than in cells exposed to radiation alone. However, the mechanisms behind this remain unknown. The purpose of this study was thus to obtain comprehensive data on gene expression using a three-dimensional clinostat synchronized to a carbon (C)-ion or X-ray irradiation system. Human fibroblasts (1BR-hTERT) were maintained under standing or rotating conditions for 3 or 24 h after synchronized C-ion or X-ray irradiation at 1 Gy as part of a total culture time of 2 days. Among 57,773 genes analyzed with RNA sequencing, we focused particularly on the expression of 82 cell cycle-related genes after exposure to the radiation and simulated µG. The expression of cell cycle-suppressing genes (ABL1 and CDKN1A) decreased and that of cell cycle-promoting genes (CCNB1, CCND1, KPNA2, MCM4, MKI67, and STMN1) increased after C-ion irradiation under µG. The cell may pass through the G1/S and G2 checkpoints with DNA damage due to the combined effects of C-ions and µG, suggesting that increased genomic instability might occur in space.


Asunto(s)
Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Radiación no Ionizante , Transcriptoma , Ingravidez , Perfilación de la Expresión Génica , Humanos
7.
Arterioscler Thromb Vasc Biol ; 37(5): 920-929, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28302626

RESUMEN

OBJECTIVE: Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid-induced endothelial activation/inflammation. APPROACH AND RESULTS: In cultured endothelial cells, palmitic acid treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of ICAM-1 (intercellular adhesion molecule 1) and induced ICAM-1 expression and monocyte-endothelial cell adhesion. When analyzing the upstream signaling, we found that palmitic acid activated STING by inducing mitochondrial damage. Palmitic acid treatment caused mitochondrial damage and leakage of mitochondrial DNA into the cytosol. Through the cytosolic DNA sensor cGAS (cyclic GMP-AMP synthase), the mitochondrial damage and leaked cytosolic mitochondrial DNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt ) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. CONCLUSIONS: The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals.


Asunto(s)
Dieta Alta en Grasa , Células Endoteliales/metabolismo , Inflamación/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Ácido Palmítico/farmacología , Transporte Activo de Núcleo Celular , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Línea Celular Tumoral , Técnicas de Cocultivo , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/prevención & control , Resistencia a la Insulina , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Factor 3 Regulador del Interferón/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Nucleotidiltransferasas/metabolismo , Obesidad/genética , Obesidad/patología , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Transducción de Señal , Transfección
8.
Biol Cell ; 109(8): 312-321, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28643869

RESUMEN

BACKGROUND INFORMATION: Vascular endothelial cells (ECs) are a well-known cell system used in the study of mechanobiology. Using cultured ECs, we found that platelet EC adhesion molecule 1 (PECAM-1, CD31), a cell adhesion protein localised to regions of EC-EC contact, was rapidly tyrosine phosphorylated in ECs exposed to shear or cyclic stretch. Src-homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) binds phosphorylated PECAM-1 and activates the extracellular signal-regulated kinase1/2 (ERK1/2) signalling cascade, a known flow-activated signalling pathway. RESULTS: Although PECAM-1 tyrosine phosphorylation is characterised in ECs exposed to fluid shear stress, it is less well demonstrated in the cells stretched cyclically. Thus, we first show that PECAM-1 is tyrosine-phosphorylated in ECs cyclically stretched. We hypothesise that when an external force is applied to a monolayer of ECs, the force is directly transmitted to PECAM-1 which is then stretched and phosphorylation sites in its cytoplasmic domain are exposed and phosphorylated. This hypothesis requires the presence of any stretchable structure within the PECAM-1 cytoplasmic domain. Force spectroscopy measurements were performed with a construct containing cytoplasmic PECAM-1 domains inserted between I27 motifs, a recombinant string of the structural elements from titin. This strategy allowed us to identify the events in which a single molecule is being pulled and to detect the unravelling of the cytoplasmic domain of PECAM-1 by force. The response by PECAM-1 to mechanical loading was heterogeneous but with magnitudes as high as or higher than the naturally force bearing I27 domains. CONCLUSIONS: The PECAM-1 cytoplasmic domain has a structure that can be unfolded by externally applied force and this unfolding of PECAM-1 may be necessary for its phosphorylation, the first step of PECAM-1 mechanosignalling. SIGNIFICANCE: When EC monolayers are mechanically stimulated, the PECAM-1 found at EC contacts is phosphorylated. We have proposed that under these conditions, the cytoplasmic domain of PECAM-1 is unfolded, which then exposes a phosphorylation site, allowing it to be accessed. The stretch induced unfolding is essential to this model of PECAM-1 mechanosignalling. In this study, we investigate whether the cytoplasmic domain of PECAM-1 has a stretchable structure, and the results are in line with our hypothesis.


Asunto(s)
Aorta/metabolismo , Endotelio Vascular/metabolismo , Mecanotransducción Celular/fisiología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Tirosina/metabolismo , Animales , Aorta/citología , Bovinos , Células Cultivadas , Endotelio Vascular/citología , Mutación , Fosforilación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/química , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Transducción de Señal
9.
Cell Mol Life Sci ; 74(10): 1835-1858, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28039525

RESUMEN

Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.


Asunto(s)
Arterias/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Endoteliales/patología , Transducción de Señal , Animales , Arterias/metabolismo , Aterosclerosis/sangre , Estrés del Retículo Endoplásmico , Células Endoteliales/metabolismo , Humanos , Inflamasomas/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Quinasa C/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Flujo Sanguíneo Regional , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Sumoilación , Proteína p53 Supresora de Tumor/metabolismo
10.
Int J Mol Sci ; 20(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583489

RESUMEN

Space radiation and microgravity (µG) are two major environmental stressors for humans in space travel. One of the fundamental questions in space biology research is whether the combined effects of µG and exposure to cosmic radiation are interactive. While studies addressing this question have been carried out for half a century in space or using simulated µG on the ground, the reported results are ambiguous. For the assessment and management of human health risks in future Moon and Mars missions, it is necessary to obtain more basic data on the molecular and cellular responses to the combined effects of radiation and µG. Recently we incorporated a µG⁻irradiation system consisting of a 3D clinostat synchronized to a carbon-ion or X-ray irradiation system. Our new experimental setup allows us to avoid stopping clinostat rotation during irradiation, which was required in all other previous experiments. Using this system, human fibroblasts were exposed to X-rays or carbon ions under the simulated µG condition, and chromosomes were collected with the premature chromosome condensation method in the first mitosis. Chromosome aberrations (CA) were quantified by the 3-color fluorescent in situ hybridization (FISH) method. Cells exposed to irradiation under the simulated µG condition showed a higher frequency of both simple and complex types of CA compared to cells irradiated under the static condition by either X-rays or carbon ions.


Asunto(s)
Radioisótopos de Carbono/efectos adversos , Aberraciones Cromosómicas/efectos de la radiación , Fibroblastos/efectos de la radiación , Simulación de Ingravidez/efectos adversos , Rayos X/efectos adversos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Cromosomas Humanos Par 1/efectos de la radiación , Cromosomas Humanos Par 2/efectos de la radiación , Cromosomas Humanos Par 4/efectos de la radiación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Humanos , Hibridación Fluorescente in Situ
11.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 2041-2055, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28130202

RESUMEN

Although the majority of SUMO substrates are localized in the nucleus, SUMOylation is not limited to nuclear proteins and can be also detected in extra-nuclear proteins. In this review, we will highlight and discuss how SUMOylation in different cellular compartments regulate biological processes. First, we will discuss the key role of SUMOylation of proteins in the extra-nuclear compartment in cardiomyocytes, which is overwhelmingly cardio-protective. On the other hand, SUMOylation of nuclear proteins is generally detrimental to the cardiac function mainly because of the trans-repressive nature of SUMOylation on many transcription factors. We will also discuss the potential role of SUMOylation in epigenetic regulation. In this review, we will propose a new concept that shuttling of SUMO proteases between the nuclear and extra-nuclear compartments without changing their enzymatic activity regulates the extent of SUMOylation in these compartments and determines the response and fate of cardiomyocytes after cardiac insults. Approaches focused specifically to inhibit this shuttling in cardiomyocytes will be necessary to understand the whole picture of SUMOylation and its pathophysiological consequences in the heart, especially after cardiac insults. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.


Asunto(s)
Cardiopatías/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Sumoilación , Animales , Cardiopatías/patología , Humanos , Miocardio/patología , Miocitos Cardíacos/patología
12.
Adv Exp Med Biol ; 963: 337-358, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197922

RESUMEN

Sumoylation, a reversible post-transcriptional modification process, of proteins are involved in cellular differentiation, growth, and even motility by regulating various protein functions. Sumoylation is not limited to cytosolic proteins as recent evidence shows that nuclear proteins, those associated with membranes, and mitochondrial proteins are also sumoylated. Moreover, it is now known that sumoylation plays an important role in the process of major human ailments such as malignant, cardiovascular and neurological diseases. In this chapter, we will highlight and discuss how the localization of SUMO protease and SUMO E3 ligase in different compartments within a cell regulates biological processes that depend on sumoylation. First, we will discuss the key role of sumoylation in the nucleus, which leads to the development of endothelial dysfunction and atherosclerosis . We will then discuss how sumoylation of plasma membrane potassium channel proteins are involved in epilepsy and arrhythmia. Mitochondrial proteins are known to be also sumoylated, and the importance of dynamic-related protein 1 (DRP1) sumoylation on mitochondrial function will be discussed. As we will emphasize throughout this review, sumoylation plays crucial roles in different cellular compartments, which is coordinately regulated by the translocation of various SUMO proteases and SUMO E3 ligase. Comprehensive approach will be necessary to understand the molecular mechanism for efficiently moving around various enzymes that regulate sumoylation within cells.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Sistema Nervioso/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/patología , Sistema Cardiovascular/fisiopatología , Humanos , Sistema Nervioso/patología , Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología
13.
J Immunol ; 193(7): 3803-15, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25187658

RESUMEN

Because ERK5 inhibits endothelial inflammation and dysfunction, activating ERK5 might be a novel approach to protecting vascular endothelial cells (ECs) against various pathological conditions of the blood vessel. We have identified small molecules that protect ECs via ERK5 activation and determined their contribution to preventing cardiac allograft rejection. Using high-throughput screening, we identified certain statins and antimalarial agents including chloroquine, hydroxychloroquine, and quinacrine as strong ERK5 activators. Pitavastatin enhanced ERK5 transcriptional activity and Kruppel-like factor-2 expression in cultured human and bovine ECs, but these effects were abolished by the depletion of ERK5. Chloroquine and hydroxychloroquine upregulated ERK5 kinase activity and inhibited VCAM-1 expression in an ERK5-dependent but MAPK/ERK kinase 5- and Kruppel-like factor 2/4-independent manner. Leukocyte rolling and vascular reactivity were used to evaluate endothelial function in vivo, and we found that EC-specific ERK5 knockout (ERK5-EKO) mice exhibited increased leukocyte rolling and impaired vascular reactivity, which could not be corrected by pitavastatin. The role of endothelial ERK5 in acute cardiac allograft rejection was also examined by heterotopic grafting of the heart obtained from either wild-type or ERK5-EKO mice into allomismatched recipient mice. A robust increase in both inflammatory gene expression and CD45-positive cell infiltration into the graft was observed. These tissue rejection responses were inhibited by pitavastatin in wild-type but not ERK5-EKO hearts. Our study has identified statins and antimalarial drugs as strong ERK5 activators and shown that ERK5 activation is preventive of endothelial inflammation and dysfunction and acute allograft rejection.


Asunto(s)
Antimaláricos/farmacología , Endotelio Vascular/inmunología , Rechazo de Injerto/tratamiento farmacológico , Trasplante de Corazón , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Proteína Quinasa 7 Activada por Mitógenos/inmunología , Quinolinas/farmacología , Transcripción Genética/efectos de los fármacos , Aloinjertos , Animales , Bovinos , Endotelio Vascular/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/inmunología , Rodamiento de Leucocito/efectos de los fármacos , Rodamiento de Leucocito/genética , Rodamiento de Leucocito/inmunología , Ratones , Ratones Noqueados , Proteína Quinasa 7 Activada por Mitógenos/genética , Transcripción Genética/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
14.
Circulation ; 130(2): 180-91, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25001623

RESUMEN

BACKGROUND: Efferocytosis is a process by which dead and dying cells are removed by phagocytic cells. Efferocytosis by macrophages is thought to curb the progression of atherosclerosis, but the mechanistic insight of this process is lacking. METHODS AND RESULTS: When macrophages were fed apoptotic cells or treated with pitavastatin in vitro, efferocytosis-related signaling and phagocytic capacity were upregulated in an ERK5 activity-dependent manner. Macrophages isolated from macrophage-specific ERK5-null mice exhibited reduced efferocytosis and levels of gene and protein expression of efferocytosis-related molecules. When these mice were crossed with low-density lipoprotein receptor(-/-) mice and fed a high-cholesterol diet, atherosclerotic plaque formation was accelerated, and the plaques had more advanced and vulnerable morphology. CONCLUSIONS: Our results demonstrate that ERK5, which is robustly activated by statins, is a hub molecule that upregulates macrophage efferocytosis, thereby suppressing atherosclerotic plaque formation. Molecules that upregulate ERK5 and its signaling in macrophages may be good drug targets for suppressing cardiovascular diseases.


Asunto(s)
Aterosclerosis/enzimología , Macrófagos/enzimología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Fagocitosis/fisiología , Animales , Aterosclerosis/patología , Aterosclerosis/prevención & control , Células Cultivadas , Activación Enzimática/fisiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Am J Physiol Heart Circ Physiol ; 308(12): H1451-62, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25862828

RESUMEN

Cells are constantly exposed to mechanical forces that play a role in modulating cellular structure and function. The cardiovascular system experiences physical forces in the form of shear stress and stretch associated with blood flow and contraction, respectively. These forces are sensed by endothelial cells and cardiomyocytes and lead to responses that control vascular and cardiac homeostasis. This was highlighted at the Pan American Physiological Society meeting at Iguassu Falls, Brazil, in a symposium titled "Mechanosignaling in the Vasculature." This symposium presented recent research that showed the existence of a vital link between mechanosensing and downstream redox sensitive signaling cascades. This link helps to transduce and transmit the physical force into an observable physiological response. The speakers showcased how mechanosensors such as ion channels, membrane receptor kinases, adhesion molecules, and other cellular components transduce the force via redox signals (such as reactive oxygen species and nitric oxide) to receptors (transcription factors, growth factors, etc.). Receptor activated pathways then lead to cellular responses including cellular proliferation, contraction, and remodeling. These responses have major relevance to the physiology and pathophysiology of various cardiovascular diseases. Thus an understanding of the complex series of events, from the initial sensing through the final response, is essential for progress in this field. Overall, this symposium addressed some important emerging concepts in the field of mechanosignaling and the eventual pathophysiological responses.


Asunto(s)
Vasos Sanguíneos/metabolismo , Mecanotransducción Celular , Animales , Vasos Sanguíneos/fisiopatología , Células Endoteliales/metabolismo , Humanos , Canales KATP/metabolismo , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica , Oxidación-Reducción , Estrés Oxidativo , Estimulación Física , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo , Estrés Mecánico
16.
Circ Res ; 112(6): 911-23, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23381569

RESUMEN

RATIONALE: Disturbed flow induces proinflammatory and apoptotic responses in endothelial cells, causing them to become dysfunctional and subsequently proatherogenic. OBJECTIVE: Although a possible link between SUMOylation of p53 and ERK5 detected during endothelial apoptosis and inflammation has been suggested, the mechanistic insights, especially under the proatherogenic flow condition, remain largely unknown. METHODS AND RESULTS: SUMOylation of p53 and ERK5 was induced by disturbed flow but not by steady laminar flow. To examine the role of the disturbed flow-induced p53 and ERK5 SUMOylation, we used de-SUMOylation enzyme of sentrin/Small Ubiquitin-like MOdifier (SUMO)-specific protease 2 deficiency (Senp2(+/-)) mice and observed a significant increase in endothelial apoptosis and adhesion molecule expression both in vitro and in vivo. These increases, however, were significantly inhibited in endothelial cells overexpressing p53 and ERK5 SUMOylation site mutants. Senp2(+/-) mice exhibited increased leukocyte rolling along the endothelium, and accelerated formation of atherosclerotic lesions was observed in Senp2(+/-)/Ldlr(-/-), but not in Senp2(+/+)/Ldlr(-/-), mice fed a high-cholesterol diet. Notably, the extent of lesion size in the aortic arch of Senp2(+/-)/Ldlr(-/-) mice was much larger than that in the descending aorta, also suggesting a crucial role of the disturbed flow-induced SUMOylation of proteins, including p53 and ERK5 in atherosclerosis formation. CONCLUSIONS: These data show the unique role of sentrin/SUMO-specific protease 2 on endothelial function under disturbed flow and suggest that SUMOylation of p53 and ERK5 by disturbed flow contributes to the atherosclerotic plaque formation. Molecules involved in this newly discovered signaling will be useful targets for controlling endothelial cells dysfunction and consequently atherosclerosis formation.


Asunto(s)
Aterosclerosis/etiología , Células Endoteliales/metabolismo , Hemorreología/fisiología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteína SUMO-1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Trasplante de Médula Ósea , Moléculas de Adhesión Celular/metabolismo , Regulación hacia Abajo , Selectina E/metabolismo , Endotelio Vascular/metabolismo , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
17.
Physiol Genomics ; 46(17): 624-33, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24986958

RESUMEN

Carotid intima formation is a significant risk factor for cardiovascular disease. C3H/FeJ (C3H/F) and SJL/J (SJL) inbred mouse strains differ in susceptibility to immune and vascular traits. Using a congenic approach we demonstrated that the Intima modifier 2 (Im2) locus on chromosome 11 regulates leukocyte infiltration. We sought to determine whether inflammation was due to changes in circulating immune cells or activation of vascular wall cells in genetically pure Im2 (C3H/F.SJL.11.1) mice. Complete blood counts showed no differences in circulating monocytes between C3H/F and C3H/F.SJL.11.1 compared with SJL mice. Aortic vascular cell adhesion molecule-1 (VCAM-1) total protein levels were dramatically increased in SJL and C3H/F.SJL.11.1 compared with C3H/F mice. Immunostaining of aortic endothelial cells (EC) showed a significant increase in VCAM-1 expression in SJL and C3H/F.SJL.11.1 compared with C3H/F under steady flow conditions. Immunostaining of EC membranes revealed a significant decrease in EC size in SJL and C3H/F.SJL.11.1 vs. C3H/F in regions of disturbed flow. Vascular permeability was significantly higher in C3H/F.SJL.11.1 compared with C3H/F. Our results indicate that Im2 regulation of leukocyte infiltration is mediated by EC inflammation and permeability. RNA sequencing and pathway analyses comparing genes in the Im2 locus to C3H/F provide insight into candidate genes that regulate vascular wall inflammation and permeability highlighting important genetic mechanisms that control vascular intima in response to injury.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales/patología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Sitios Genéticos , Túnica Íntima/patología , Túnica Íntima/fisiopatología , Animales , Tamaño de la Célula , Células Endoteliales/metabolismo , Ontología de Genes , Genoma/genética , Inflamación/patología , Masculino , Ratones Congénicos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN , Molécula 1 de Adhesión Celular Vascular/metabolismo
18.
Circulation ; 127(4): 486-99, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23243209

RESUMEN

BACKGROUND: Diabetes mellitus is a major risk factor for cardiovascular mortality by increasing endothelial cell (EC) dysfunction and subsequently accelerating atherosclerosis. Extracellular-signal regulated kinase 5 (ERK5) is activated by steady laminar flow and regulates EC function by increasing endothelial nitric oxide synthase expression and inhibiting EC inflammation. However, the role and regulatory mechanisms of ERK5 in EC dysfunction and atherosclerosis are poorly understood. Here, we report the critical role of the p90 ribosomal S6 kinase (p90RSK)/ERK5 complex in EC dysfunction in diabetes mellitus and atherosclerosis. METHODS AND RESULTS: Inducible EC-specific ERK5 knockout (ERK5-EKO) mice showed increased leukocyte rolling and impaired vessel reactivity. To examine the role of endothelial ERK5 in atherosclerosis, we used inducible ERK5-EKO-LDLR(-/-) mice and observed increased plaque formation. When activated, p90RSK associated with ERK5, and this association inhibited ERK5 transcriptional activity and upregulated vascular cell adhesion molecule 1 expression. In addition, p90RSK directly phosphorylated ERK5 S496 and reduced endothelial nitric oxide synthase expression. p90RSK activity was increased in diabetic mouse vessels, and fluoromethyl ketone-methoxyethylamine, a specific p90RSK inhibitor, ameliorated EC-leukocyte recruitment and diminished vascular reactivity in diabetic mice. Interestingly, in ERK5-EKO mice, increased leukocyte rolling and impaired vessel reactivity were resistant to the beneficial effects of fluoromethyl ketone-methoxyethylamine, suggesting a critical role for endothelial ERK5 in mediating the salutary effects of fluoromethyl ketone-methoxyethylamine on endothelial dysfunction. Fluoromethyl ketone-methoxyethylamine also inhibited atherosclerosis formation in ApoE(-/-) mice. CONCLUSIONS: Our study highlights the importance of the p90RSK/ERK5 module as a critical mediator of EC dysfunction in diabetes mellitus and atherosclerosis formation, thus revealing a potential new target for therapeutic intervention.


Asunto(s)
Aterosclerosis/fisiopatología , Angiopatías Diabéticas/fisiopatología , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/metabolismo , Sinergismo Farmacológico , Glucosa/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/farmacología , Rodamiento de Leucocito/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidantes/farmacología , Fosforilación/fisiología , Ratas , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores
19.
Circ Res ; 110(4): 560-8, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22267843

RESUMEN

RATIONALE: Endothelial cells (EC) at regions exposed to disturbed flow (d-flow) are predisposed to inflammation and the subsequent development of atherosclerosis. We previously showed that thioredoxin interacting protein (TXNIP) was required for tumor necrosis factor-mediated expression of vascular cell adhesion molecule-1. OBJECTIVE: We sought to investigate the role of TXNIP in d-flow-induced cell adhesion molecule expression and leukocyte interaction with vessels, and the mechanisms by which TXNIP suppresses athero-protective gene expression. METHODS AND RESULTS: Using en face staining of mouse aorta, we found a dramatic increase of TXNIP in EC at sites exposed to d-flow as compared to steady flow. EC-specific TXNIP (EC-TXNIP) knockout mice showed significant decreases in vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 mRNA expression in the d-flow regions of mouse aorta. Intravital microscopy of mesenteric venules showed that leukocyte rolling time was decreased, whereas rolling velocity was increased significantly in EC-TXNIP knockout mice. In vitro experiments using a cutout flow chamber to generate varying flow patterns showed that increased TXNIP was required for d-flow-induced EC-monocyte adhesion. Furthermore, we found that the expression of Kruppel-like factor 2, a key anti-inflammatory transcription factor in EC, was inhibited by TXNIP. Luciferase and chromatin immunoprecipitation assays showed that TXNIP was present within a repressing complex on the Kruppel-like factor 2 promoter. CONCLUSIONS: These data demonstrate the essential role for TXNIP in mediating EC-leukocyte adhesion under d-flow, as well as define a novel mechanism by which TXNIP acts as a transcriptional corepressor to regulate Kruppel-like factor 2-dependent gene expression.


Asunto(s)
Aterosclerosis/metabolismo , Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Rodamiento de Leucocito , Tiorredoxinas/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/inmunología , Proteínas Portadoras/genética , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/inmunología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/genética , Inflamación/inmunología , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Interferencia de ARN , Flujo Sanguíneo Regional , Estrés Mecánico , Tiorredoxinas/genética , Transfección , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
20.
Circ Res ; 110(4): 536-50, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22267842

RESUMEN

RATIONALE: Cardiomyocyte apoptosis is one of the key events in the development and progression of heart failure, and a crucial role for ICER (inducible cAMP early repressor) in this process has been previously reported. ERK5 is known to inhibit cardiac apoptosis after myocardial infarction (MI), especially in hyperglycemic states, via association with CHIP ubiquitin (Ub) ligase and subsequent upregulation of CHIP ligase activity, which induces ICER ubiquitination and subsequent protein degradation. The regulatory mechanism governing ERK5/CHIP interaction is unknown. OBJECTIVE: We previously demonstrated increased p90RSK activation in the diabetic heart. As a logical extension of this work, we now investigate whether p90RSK activation inhibits ERK5-mediated CHIP activation, and subsequently increases ICER levels and apoptosis. METHODS AND RESULTS: p90RSK activation inhibits ERK5/CHIP association and CHIP Ub ligase activity. p90RSK and CHIP share a common binding site in the ERK5 C-terminal domain (aa571-807). Overexpression of either p90RSK or an ERK5 fragment (aa571-807) inhibits ERK5/CHIP association, suggesting that p90RSK and CHIP competes for ERK5 binding and that p90RSK activation is critical for inhibiting ERK5/CHIP interaction. We also identified ERK5-S496 as being directly phosphorylated by p90RSK and demonstrated that an ERK5-S496A mutant significantly impairs Angiotensin II-mediated inhibition of CHIP activity and subsequent increase in ICER levels. In vivo, either cardiac-specific depletion of ERK5 or overexpression of p90RSK inhibits CHIP activity and accelerates cardiac apoptosis after MI-a phenomenon fully reversible by activating ERK5. CONCLUSIONS: These data suggest a role for p90RSK in inhibiting CHIP activity and promoting cardiac apoptosis through binding to and phosphorylation of ERK5-S496.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/enzimología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Infarto del Miocardio/enzimología , Miocitos Cardíacos/enzimología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Angiotensina II/metabolismo , Animales , Animales Recién Nacidos , Sitios de Unión , Unión Competitiva , Células Cultivadas , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Activación Enzimática , MAP Quinasa Quinasa 5/genética , MAP Quinasa Quinasa 5/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína Quinasa 7 Activada por Mitógenos/deficiencia , Proteína Quinasa 7 Activada por Mitógenos/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA