Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744803

RESUMEN

Cancer is the second most common cause of death in the United States, accounting for 602,350 deaths in 2020. Cancer-related death rates have declined by 27% over the past two decades, partially due to the identification of novel anti-cancer drugs. Despite improvements in cancer treatment, newly approved oncology drugs are associated with increased toxicity risk. These toxicities may be mitigated by pharmacokinetic optimization and reductions in off-target interactions. As such, there is a need for early-stage implementation of pharmacokinetic (PK) prediction tools. Several PK prediction platforms exist, including pkCSM, SuperCypsPred, Pred-hERG, Similarity Ensemble Approach (SEA), and SwissADME. These tools can be used in screening hits, allowing for the selection of compounds were reduced toxicity and/or risk of attrition. In this short commentary, we used PK prediction tools in the optimization of mitogen activated extracellular signal-related kinase kinase 1 (MEK1) inhibitors. In doing so, we identified MEK1 inhibitors with retained activity and optimized predictive PK properties, devoid of hERG inhibition. These data support the use of publicly available PK prediction platforms in early-stage drug discovery to design safer drugs.


Asunto(s)
Antineoplásicos , Descubrimiento de Drogas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Dev Dyn ; 250(10): 1432-1449, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33811421

RESUMEN

BACKGROUND: Mitral valve prolapse (MVP) is a common and progressive cardiovascular disease with developmental origins. How developmental errors contribute to disease pathogenesis are not well understood. RESULTS: A multimeric complex was identified that consists of the MVP gene Dzip1, Cby1, and ß-catenin. Co-expression during valve development revealed overlap at the basal body of the primary cilia. Biochemical studies revealed a DZIP1 peptide required for stabilization of the complex and suppression of ß-catenin activities. Decoy peptides generated against this interaction motif altered nuclear vs cytosolic levels of ß-catenin with effects on transcriptional activity. A mutation within this domain was identified in a family with inherited non-syndromic MVP. This novel mutation and our previously identified DZIP1S24R variant resulted in reduced DZIP1 and CBY1 stability and increased ß-catenin activities. The ß-catenin target gene, MMP2 was up-regulated in the Dzip1S14R/+ valves and correlated with loss of collagenous ECM matrix and myxomatous phenotype. CONCLUSION: Dzip1 functions to restrain ß-catenin signaling through a CBY1 linker during cardiac development. Loss of these interactions results in increased nuclear ß-catenin/Lef1 and excess MMP2 production, which correlates with developmental and postnatal changes in ECM and generation of a myxomatous phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Válvulas Cardíacas/embriología , Prolapso de la Válvula Mitral/metabolismo , Organogénesis/fisiología , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células HEK293 , Válvulas Cardíacas/metabolismo , Humanos , Ratones , Ratones Noqueados , Prolapso de la Válvula Mitral/genética , Fenotipo , Transducción de Señal/fisiología
3.
Dev Biol ; 463(1): 26-38, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32151560

RESUMEN

Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown. Using a series of gene inactivation approaches, we define a paracrine mechanism by which endocardially-expressed Desert Hedgehog (DHH) activates primary cilia signaling on neighboring valve interstitial cells. High-resolution imaging and functional assays show that DHH de-represses smoothened at the primary cilia, resulting in kinase activation of RAC1 through the RAC1-GEF, TIAM1. Activation of this non-canonical hedgehog pathway stimulates α-smooth actin organization and ECM remodeling. Genetic or pharmacological perturbation of this pathway results in enlarged valves that progress to a myxomatous phenotype, similar to valves seen in MVP patients. These data identify a potential molecular origin for MVP as well as establish a paracrine DHH-primary cilium cross-talk mechanism that is likely applicable across developmental tissue types.


Asunto(s)
Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Válvula Mitral/embriología , Actinas/metabolismo , Animales , Matriz Extracelular/metabolismo , Enfermedades de las Válvulas Cardíacas , Proteínas Hedgehog/fisiología , Ratones , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/metabolismo , Músculo Liso/metabolismo , Músculo Liso/fisiología , Miocitos del Músculo Liso/metabolismo , Neuropéptidos/metabolismo , Fenotipo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína de Unión al GTP rac1/metabolismo
4.
J Biol Chem ; 294(17): 6710-6718, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30824539

RESUMEN

The exocyst is a highly conserved protein complex found in most eukaryotic cells and is associated with many functions, including protein translocation in the endoplasmic reticulum, vesicular basolateral targeting, and ciliogenesis in the kidney. To investigate the exocyst functions, here we exchanged proline for alanine in the highly conserved VXPX ciliary targeting motif of EXOC5 (exocyst complex component 5), a central exocyst gene/protein, and generated stable EXOC5 ciliary targeting sequence-mutated (EXOC5CTS-m) Madin-Darby canine kidney (MDCK) cells. The EXOC5CTS-m protein was stable and could bind other members of the exocyst complex. Culturing stable control, EXOC5-overexpressing (OE), Exoc5-knockdown (KD), and EXOC5CTS-m MDCK cells on Transwell filters, we found that primary ciliogenesis is increased in EXOC5 OE cells and inhibited in Exoc5-KD and EXOC5CTS-m cells. Growing cells in collagen gels until the cyst stage, we noted that EXOC5-OE cells form mature cysts with single lumens more rapidly than control cysts, whereas Exoc5-KD and EXOC5CTS-m MDCK cells failed to form mature cysts. Adding hepatocyte growth factor to induce tubulogenesis, we observed that EXOC5-OE cell cysts form tubules more efficiently than control MDCK cell cysts, EXOC5CTS-m MDCK cell cysts form significantly fewer tubules than control cell cysts, and Exoc5-KD cysts did not undergo tubulogenesis. Finally, we show that EXOC5 mRNA almost completely rescues the ciliary phenotypes in exoc5-mutant zebrafish, unlike the EXOC5CTS-m mRNA, which could not efficiently rescue the phenotypes. Taken together, these results indicate that the exocyst, acting through the primary cilium, is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis.


Asunto(s)
Cilios/fisiología , Quistes/patología , Túbulos Renales/crecimiento & desarrollo , Riñón/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , ADN Complementario/genética , Perros , Técnicas de Silenciamiento del Gen , Humanos , Enfermedades Renales/patología , Células de Riñón Canino Madin Darby , Mutagénesis Sitio-Dirigida , Unión Proteica , Transporte de Proteínas , ARN Mensajero/metabolismo , Proteínas de Transporte Vesicular/genética , Pez Cebra
5.
Circulation ; 140(16): 1331-1341, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31387361

RESUMEN

BACKGROUND: Bicuspid aortic valve (BAV) disease is a congenital defect that affects 0.5% to 1.2% of the population and is associated with comorbidities including ascending aortic dilation and calcific aortic valve stenosis. To date, although a few causal genes have been identified, the genetic basis for the vast majority of BAV cases remains unknown, likely pointing to complex genetic heterogeneity underlying this phenotype. Identifying genetic pathways versus individual gene variants may provide an avenue for uncovering additional BAV causes and consequent comorbidities. METHODS: We performed genome-wide association Discovery and Replication Studies using cohorts of 2131 patients with BAV and 2728 control patients, respectively, which identified primary cilia genes as associated with the BAV phenotype. Genome-wide association study hits were prioritized based on P value and validated through in vivo loss of function and rescue experiments, 3-dimensional immunohistochemistry, histology, and morphometric analyses during aortic valve morphogenesis and in aged animals in multiple species. Consequences of these genetic perturbations on cilia-dependent pathways were analyzed by Western and immunohistochemistry analyses, and assessment of aortic valve and cardiac function were determined by echocardiography. RESULTS: Genome-wide association study hits revealed an association between BAV and genetic variation in human primary cilia. The most associated single-nucleotide polymorphisms were identified in or near genes that are important in regulating ciliogenesis through the exocyst, a shuttling complex that chaperones cilia cargo to the membrane. Genetic dismantling of the exocyst resulted in impaired ciliogenesis, disrupted ciliogenic signaling and a spectrum of cardiac defects in zebrafish, and aortic valve defects including BAV, valvular stenosis, and valvular calcification in murine models. CONCLUSIONS: These data support the exocyst as required for normal ciliogenesis during aortic valve morphogenesis and implicate disruption of ciliogenesis and its downstream pathways as contributory to BAV and associated comorbidities in humans.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Válvula Aórtica/anomalías , Cilios/fisiología , Cardiopatías Congénitas/patología , Enfermedades de las Válvulas Cardíacas/patología , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/genética , Enfermedad de la Válvula Aórtica Bicúspide , Estudios de Casos y Controles , Cilios/patología , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genotipo , Cardiopatías Congénitas/genética , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/metabolismo , Humanos , Ratones , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
J Biol Chem ; 292(36): 14814-14826, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28729419

RESUMEN

We previously have shown that the highly conserved eight-protein exocyst trafficking complex is required for ciliogenesis in kidney tubule cells. We hypothesized here that ciliogenic programs are conserved across organs and species. To determine whether renal primary ciliogenic programs are conserved in the eye, and to characterize the function and mechanisms by which the exocyst regulates eye development in zebrafish, we focused on exoc5, a central component of the exocyst complex, by analyzing both exoc5 zebrafish mutants, and photoreceptor-specific Exoc5 knock-out mice. Two separate exoc5 mutant zebrafish lines phenocopied exoc5 morphants and, strikingly, exhibited a virtual absence of photoreceptors, along with abnormal retinal development and cell death. Because the zebrafish mutant was a global knockout, we also observed defects in several ciliated organs, including the brain (hydrocephalus), heart (cardiac edema), and kidney (disordered and shorter cilia). exoc5 knockout increased phosphorylation of the regulatory protein Mob1, consistent with Hippo pathway activation. exoc5 mutant zebrafish rescue with human EXOC5 mRNA completely reversed the mutant phenotype. We accomplished photoreceptor-specific knockout of Exoc5 with our Exoc5 fl/fl mouse line crossed with a rhodopsin-Cre driver line. In Exoc5 photoreceptor-specific knock-out mice, the photoreceptor outer segment structure was severely impaired at 4 weeks of age, although a full-field electroretinogram indicated a visual response was still present. However, by 6 weeks, visual responses were eliminated. In summary, we show that ciliogenesis programs are conserved in the kidneys and eyes of zebrafish and mice and that the exocyst is necessary for photoreceptor ciliogenesis and retinal development, most likely by trafficking cilia and outer-segment proteins.


Asunto(s)
Cilios/metabolismo , Exocitosis , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Mutación , Células Fotorreceptoras de Vertebrados/patología , Retina/patología , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra
7.
Dev Dyn ; 246(8): 625-634, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28556366

RESUMEN

BACKGROUND: Bicuspid aortic valve (BAV) disease is the most common congenital heart defect, affecting 0.5-1.2% of the population and causing significant morbidity and mortality. Only a few genes have been identified in pedigrees, and no single gene model explains BAV inheritance, thus supporting a complex genetic network of interacting genes. However, patients with rare syndromic diseases that stem from alterations in the structure and function of primary cilia ("ciliopathies") exhibit BAV as a frequent cardiovascular finding, suggesting primary cilia may factor broadly in disease etiology. RESULTS: Our data are the first to demonstrate that primary cilia are expressed on aortic valve mesenchymal cells during embryonic development and are lost as these cells differentiate into collagen-secreting fibroblastic-like cells. The function of primary cilia was tested by genetically ablating the critical ciliogenic gene Ift88. Loss of Ift88 resulted in abrogation of primary cilia and increased fibrogenic extracellular matrix (ECM) production. Consequentially, stratification of ECM boundaries normally present in the aortic valve were lost and a highly penetrant BAV phenotype was evident at birth. CONCLUSIONS: Our data support cilia as a novel cellular mechanism for restraining ECM production during aortic valve development and broadly implicate these structures in the etiology of BAV disease in humans. Developmental Dynamics 246:625-634, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Válvula Aórtica/anomalías , Válvula Aórtica/metabolismo , Cilios/metabolismo , Cilios/fisiología , Enfermedades de las Válvulas Cardíacas/metabolismo , Animales , Válvula Aórtica/crecimiento & desarrollo , Enfermedad de la Válvula Aórtica Bicúspide , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Matriz Extracelular/metabolismo , Femenino , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
8.
J Cardiovasc Dev Dis ; 9(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35200715

RESUMEN

Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.

9.
Elife ; 112022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36441651

RESUMEN

Dysregulation of the imprinted H19/IGF2 locus can lead to Silver-Russell syndrome (SRS) in humans. However, the mechanism of how abnormal H19/IGF2 expression contributes to various SRS phenotypes remains unclear, largely due to incomplete understanding of the developmental functions of these two genes. We previously generated a mouse model with humanized H19/IGF2 imprinting control region (hIC1) on the paternal allele that exhibited H19/Igf2 dysregulation together with SRS-like growth restriction and perinatal lethality. Here, we dissect the role of H19 and Igf2 in cardiac and placental development utilizing multiple mouse models with varying levels of H19 and Igf2. We report severe cardiac defects such as ventricular septal defects and thinned myocardium, placental anomalies including thrombosis and vascular malformations, together with growth restriction in mouse embryos that correlated with the extent of H19/Igf2 dysregulation. Transcriptomic analysis using cardiac endothelial cells of these mouse models shows that H19/Igf2 dysregulation disrupts pathways related to extracellular matrix and proliferation of endothelial cells. Our work links the heart and placenta through regulation by H19 and Igf2, demonstrating that accurate dosage of both H19 and Igf2 is critical for normal embryonic development, especially related to the cardiac-placental axis.


Asunto(s)
Síndrome de Silver-Russell , Animales , Femenino , Ratones , Embarazo , Modelos Animales de Enfermedad , Células Endoteliales , Factor II del Crecimiento Similar a la Insulina/genética , Placenta , Placentación , Síndrome de Silver-Russell/genética , Histonas/metabolismo
10.
JACC CardioOncol ; 4(4): 535-548, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36444237

RESUMEN

Background: Trametinib is a MEK1 (mitogen-activated extracellular signal-related kinase kinase 1) inhibitor used in the treatment of BRAF (rapid accelerated fibrosarcoma B-type)-mutated metastatic melanoma. Roughly 11% of patients develop cardiomyopathy following long-term trametinib exposure. Although described clinically, the molecular landscape of trametinib cardiotoxicity has not been characterized. Objectives: The aim of this study was to test the hypothesis that trametinib promotes widespread transcriptomic and cellular changes consistent with oxidative stress and impairs cardiac function. Methods: Mice were treated with trametinib (1 mg/kg/d). Echocardiography was performed pre- and post-treatment. Gross, histopathologic, and biochemical assessments were performed to probe for molecular and cellular changes. Human cardiac organoids were used as an in vitro measurement of cardiotoxicity and recovery. Results: Long-term administration of trametinib was associated with significant reductions in survival and left ventricular ejection fraction. Histologic analyses of the heart revealed myocardial vacuolization and calcification in 28% of animals. Bulk RNA sequencing identified 435 differentially expressed genes and 116 differential signaling pathways following trametinib treatment. Upstream gene analysis predicted interleukin-6 as a regulator of 17 relevant differentially expressed genes, suggestive of PI3K/AKT and JAK/STAT activation, which was subsequently validated. Trametinib hearts displayed elevated markers of oxidative stress, myofibrillar degeneration, an 11-fold down-regulation of the apelin receptor, and connexin-43 mislocalization. To confirm the direct cardiotoxic effects of trametinib, human cardiac organoids were treated for 6 days, followed by a 6-day media-only recovery. Trametinib-treated organoids exhibited reductions in diameter and contractility, followed by partial recovery with removal of treatment. Conclusions: These data describe pathologic changes observed in trametinib cardiotoxicity, supporting the exploration of drug holidays and alternative pharmacologic strategies for disease prevention.

11.
J Cardiovasc Dev Dis ; 8(3)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805717

RESUMEN

Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy. While PDGFRα is expressed throughout the ciliated valve interstitium early in development, its expression becomes restricted on the valve endocardium by birth and through adulthood. Conditional ablation of Pdgfra with Nfatc1-enhancer Cre led to significantly enlarged and hypercellular anterior leaflets with disrupted endothelial adhesions, activated ERK1/2, and a dysregulated extracellular matrix. In vitro culture experiments confirmed a role in suppressing ERK1/2 activation while promoting AKT phosphorylation. These data suggest that PDGFRα functions to suppress mesenchymal transformation and disease phenotypes by stabilizing the valve endocardium through an AKT/ERK pathway.

12.
J Am Heart Assoc ; 10(24): e022332, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34873924

RESUMEN

Background Mitral valve prolapse (MVP) is one of the most common forms of cardiac valve disease and affects 2% to 3% of the population. Previous imaging reports have indicated that myocardial fibrosis is common in MVP and described its association with sudden cardiac death. These data combined with evidence for postrepair ventricular dysfunction in surgical patients with MVP support a link between fibrosis and MVP. Methods and Results We performed histopathologic analysis of left ventricular (LV) biopsies from peripapillary regions, inferobasal LV wall and apex on surgical patients with MVP, as well as in a mouse model of human MVP (Dzip1S14R/+). Tension-dependent molecular pathways were subsequently assessed using both computational modeling and cyclical stretch of primary human cardiac fibroblasts in vitro. Histopathology of LV biopsies revealed regionalized fibrosis in the peripapillary myocardium that correlated with increased macrophages and myofibroblasts. The MVP mouse model exhibited similar regional increases in collagen deposition that progress over time. As observed in the patient biopsies, increased macrophages and myofibroblasts were observed in fibrotic areas within the murine heart. Computational modeling revealed tension-dependent profibrotic cellular and molecular responses consistent with fibrosis locations related to valve-induced stress. These simulations also identified mechanosensing primary cilia as involved in profibrotic pathways, which was validated in vitro and in human biopsies. Finally, in vitro stretching of primary human cardiac fibroblasts showed that stretch directly activates profibrotic pathways and increases extracellular matrix protein production. Conclusions The presence of prominent regional LV fibrosis in patients and mice with MVP supports a relationship between MVP and progressive damaging effects on LV structure before overt alterations in cardiac function. The regionalized molecular and cellular changes suggest a reactive response of the papillary and inferobasal myocardium to increased chordal tension from a prolapsing valve. These studies raise the question whether surgical intervention on patients with MVP should occur earlier than indicated by current guidelines to prevent advanced LV fibrosis and potentially reduce residual risk of LV dysfunction and sudden cardiac death.


Asunto(s)
Cardiomiopatías , Prolapso de la Válvula Mitral , Animales , Cardiomiopatías/etiología , Cardiomiopatías/patología , Fibrosis , Humanos , Ratones , Prolapso de la Válvula Mitral/complicaciones
13.
J Cardiovasc Dev Dis ; 7(3)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824435

RESUMEN

ß-catenin has been widely studied in many animal and organ systems across evolution, and gain or loss of function has been linked to a number of human diseases. Yet fundamental knowledge regarding its protein expression and localization remains poorly described. Thus, we sought to define whether there was a temporal and cell-specific regulation of ß-catenin activities that correlate with distinct cardiac morphological events. Our findings indicate that activated nuclear ß-catenin is primarily evident early in gestation. As development proceeds, nuclear ß-catenin is down-regulated and becomes restricted to the membrane in a subset of cardiac progenitor cells. After birth, little ß-catenin is detected in the heart. The co-expression of ß-catenin with its main transcriptional co-factor, Lef1, revealed that Lef1 and ß-catenin expression domains do not extensively overlap in the cardiac valves. These data indicate mutually exclusive roles for Lef1 and ß-catenin in most cardiac cell types during development. Additionally, these data indicate diverse functions for ß-catenin within the nucleus and membrane depending on cell type and gestational timing. Cardiovascular studies should take into careful consideration both nuclear and membrane ß-catenin functions and their potential contributions to cardiac development and disease.

14.
Anat Rec (Hoboken) ; 302(1): 117-124, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30288957

RESUMEN

Mitral valve prolapse (MVP) affects 2.4% of the population and has poorly understood etiology. Recent genetic studies have begun to unravel the complexities of MVP and through these efforts, mutations in the FLNA (Filamin-A) gene were identified as disease causing. Our in vivo and in vitro studies have validated these genetic findings and have revealed FLNA as a central regulator of valve morphogenesis. The mechanisms by which FLNA mutations result in myxomatous mitral valve disease are currently unknown, but may involve proteins previously associated with mutated regions of the FLNA protein, such as the small GTPase signaling protein, R-Ras. Herein, we report that Filamin-A is required for R-Ras expression and activation of the Ras-Mek-Erk pathway. Loss of the Ras/Erk pathway correlated with hyperactivation of pSmad2/3, increased extracellular matrix (ECM) production and enlarged mitral valves. Analyses of integrin receptors in the mitral valve revealed that Filamin-A was required for ß1-integrin expression and provided a potential mechanism for impaired ECM compaction and valve enlargement. Our data support Filamin-A as a protein that regulates the balance between Erk and Smad activation and an inability of Filamin-A deficient valve interstitial cells to effectively remodel the increased ECM production through a ß1-integrin mechanism. As a consequence, loss of Filamin-A function results in increased ECM production and generation of a myxomatous phenotype characterized by improperly compacted mitral valve tissue. Anat Rec, 302:117-124, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Matriz Extracelular/metabolismo , Filaminas/fisiología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Válvula Mitral/metabolismo , Organogénesis , Proteína smad3/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Válvula Mitral/citología , Fenotipo
15.
Sci Transl Med ; 11(493)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118289

RESUMEN

Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP.


Asunto(s)
Cilios/patología , Prolapso de la Válvula Mitral/etiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Secuencia de Bases , Matriz Extracelular/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Válvulas Cardíacas/diagnóstico por imagen , Válvulas Cardíacas/crecimiento & desarrollo , Humanos , Masculino , Ratones Noqueados , Prolapso de la Válvula Mitral/diagnóstico por imagen , Prolapso de la Válvula Mitral/genética , Morfogénesis , Linaje , Factores de Tiempo , Proteínas Supresoras de Tumor/metabolismo
16.
Neuropharmacology ; 138: 10-19, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29775679

RESUMEN

Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode KV7 channels influence alcohol intake and dependence. KV7 channels are a class of slowly activating voltage-dependent K+ channels that regulate neuronal excitability. Studies indicate that the KV7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and KV7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA KV7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective KV7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that KV7.4 channels are a critical mediator of excessive alcohol drinking.


Asunto(s)
Trastornos Relacionados con Alcohol/metabolismo , Canales de Potasio KCNQ/metabolismo , Área Tegmental Ventral/metabolismo , Disuasivos de Alcohol/farmacología , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/metabolismo , Trastornos Relacionados con Alcohol/tratamiento farmacológico , Animales , Dopamina/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Femenino , Predisposición Genética a la Enfermedad , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas Wistar , Área Tegmental Ventral/efectos de los fármacos
17.
Alcohol ; 58: 33-45, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27432260

RESUMEN

Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K+ channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K+ channel genes and escalation of drinking in a chronic-intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K+ channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K+ channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC that were dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlates with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/prevención & control , Farmacogenética/métodos , Canales de Potasio/genética , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Carbamatos/uso terapéutico , Femenino , Regulación de la Expresión Génica , Masculino , Moduladores del Transporte de Membrana/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Fenilendiaminas/uso terapéutico , Canales de Potasio/biosíntesis
18.
Insect Biochem Mol Biol ; 62: 174-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25797474

RESUMEN

Insect flight muscles have been classified as either synchronous or asynchronous based on the coupling between excitation and contraction. In the moth Manduca sexta, the flight muscles are synchronous and do not display stretch activation, which is a property of asynchronous muscles. We annotated the M. sexta genes encoding the major myofibrillar proteins and analyzed their isoform pattern and expression. Comparison with the homologous genes in Drosophila melanogaster indicates both difference and similarities. For proteins such as myosin heavy chain, tropomyosin, and troponin I the availability and number of potential variants generated by alternative spicing is mostly conserved between the two insects. The exon usage associated with flight muscles indicates that some exon sets are similarly used in the two insects, whereas others diverge. For actin the number of individual genes is different and there is no evidence for a flight muscle specific isoform. In contrast for troponin C, the number of genes is similar, as well as the isoform composition in flight muscles despite the different calcium regulation. Both troponin I and tropomyosin can include COOH-terminal hydrophobic extensions similar to tropomyosinH and troponinH found in D. melanogaster and the honeybee respectively.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas de Insectos/metabolismo , Manduca/metabolismo , Proteínas Musculares/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Exones , Vuelo Animal , Proteínas de Insectos/genética , Manduca/genética , Proteínas Musculares/genética , Miofibrillas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA