Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31351878

RESUMEN

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Asunto(s)
Intercambio Genético/fisiología , Meiosis/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 121(20): e2317373121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38722810

RESUMEN

In many organisms, most notably Drosophila, homologous chromosomes associate in somatic cells, a phenomenon known as somatic pairing, which takes place without double strand breaks or strand invasion, thus requiring some other mechanism for homologs to recognize each other. Several studies have suggested a "specific button" model, in which a series of distinct regions in the genome, known as buttons, can associate with each other, mediated by different proteins that bind to these different regions. Here, we use computational modeling to evaluate an alternative "button barcode" model, in which there is only one type of recognition site or adhesion button, present in many copies in the genome, each of which can associate with any of the others with equal affinity. In this model, buttons are nonuniformly distributed, such that alignment of a chromosome with its correct homolog, compared with a nonhomolog, is energetically favored; since to achieve nonhomologous alignment, chromosomes would be required to mechanically deform in order to bring their buttons into mutual register. By simulating randomly generated nonuniform button distributions, many highly effective button barcodes can be easily found, some of which achieve virtually perfect pairing fidelity. This model is consistent with existing literature on the effect of translocations of different sizes on homolog pairing. We conclude that a button barcode model can attain highly specific homolog recognition, comparable to that seen in actual cells undergoing somatic homolog pairing, without the need for specific interactions. This model may have implications for how meiotic pairing is achieved.


Asunto(s)
Modelos Genéticos , Animales , Emparejamiento Cromosómico , Drosophila melanogaster/genética , Cromosomas , Drosophila/genética , Simulación por Computador , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo
3.
PLoS Comput Biol ; 18(6): e1010252, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696428

RESUMEN

During meiosis, homologous chromosomes become associated side by side in a process known as homologous chromosome pairing. Pairing requires long range chromosome motion through a nucleus that is full of other chromosomes. It remains unclear how the cell manages to align each pair of chromosomes quickly while mitigating and resolving interlocks. Here, we use a coarse-grained molecular dynamics model to investigate how specific features of meiosis, including motor-driven telomere motion, nuclear envelope interactions, and increased nuclear size, affect the rate of pairing and the mitigation/resolution of interlocks. By creating in silico versions of three yeast strains and comparing the results of our model to experimental data, we find that a more distributed placement of pairing sites along the chromosome is necessary to replicate experimental findings. Active motion of the telomeric ends speeds up pairing only if binding sites are spread along the chromosome length. Adding a meiotic bouquet significantly speeds up pairing but does not significantly change the number of interlocks. An increase in nuclear size slows down pairing while greatly reducing the number of interlocks. Interestingly, active forces increase the number of interlocks, which raises the question: How do these interlocks resolve? Our model gives us detailed movies of interlock resolution events which we then analyze to build a step-by-step recipe for interlock resolution. In our model, interlocks must first translocate to the ends, where they are held in a quasi-stable state by a large number of paired sites on one side. To completely resolve an interlock, the telomeres of the involved chromosomes must come in close proximity so that the cooperativity of pairing coupled with random motion causes the telomeres to unwind. Together our results indicate that computational modeling of homolog pairing provides insight into the specific cell biological changes that occur during meiosis.


Asunto(s)
Emparejamiento Cromosómico , Meiosis , Emparejamiento Cromosómico/genética , Meiosis/genética , Membrana Nuclear , Saccharomyces cerevisiae/genética , Telómero/genética
4.
PLoS Genet ; 16(6): e1008601, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555663

RESUMEN

Programmed cellular responses to cycling ovarian-derived steroid hormones are central to normal endometrial function. Abnormalities therein, as in the estrogen-dependent, progesterone-"resistant" disorder, endometriosis, predispose to infertility and poor pregnancy outcomes. The endometrial stromal fibroblast (eSF) is a master regulator of pregnancy success. However, the complex hormone-epigenome-transcriptome interplay in eSF by each individual steroid hormone, estradiol (E2) and/or progesterone (P4), under physiologic and pathophysiologic conditions, is poorly understood and was investigated herein. Genome-wide analysis in normal, early and late stage eutopic eSF revealed: i) In contrast to P4, E2 extensively affected the eSF DNA methylome and transcriptome. Importantly, E2 resulted in a more open versus closed chromatin, confirmed by histone modification analysis. Combined E2 with P4 affected a totally different landscape than E2 or P4 alone. ii) P4 responses were aberrant in early and late stage endometriosis, and mapping differentially methylated CpG sites with progesterone receptor targets from the literature revealed different but not decreased P4-targets, leading to question the P4-"resistant" phenotype in endometriosis. Interestingly, an aberrant E2-response was noted in eSF from endometriosis women; iii) Steroid hormones affected specific genomic contexts and locations, significantly enriching enhancers and intergenic regions and minimally involving proximal promoters and CpG islands, regardless of hormone type and eSF disease state. iv) In eSF from women with endometriosis, aberrant hormone-induced methylation signatures were mainly due to existing DNA methylation marks prior to hormone treatments and involved known endometriosis genes and pathways. v) Distinct DNA methylation and transcriptomic signatures revealed early and late stage endometriosis comprise unique disease subtypes. Taken together, the data herein, for the first time, provide significant insight into the hormone-epigenome-transcriptome interplay of each steroid hormone in normal eSF, and aberrant E2 response, distinct disease subtypes, and pre-existing epigenetic aberrancies in the setting of endometriosis, provide mechanistic insights into how endometriosis affects endometrial function/dysfunction.


Asunto(s)
Metilación de ADN , Endometriosis/genética , Epigénesis Genética , Estradiol/metabolismo , Progesterona/metabolismo , Transcriptoma , Adulto , Cromatina/genética , Cromatina/metabolismo , Islas de CpG , Endometriosis/metabolismo , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Estradiol/farmacología , Femenino , Humanos , Progesterona/farmacología
5.
J Med Virol ; 93(7): 4537-4543, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33325049

RESUMEN

Data are conflicting regarding the impact of tobacco smoking in people with pneumonia due to SARS-CoV-2 infection (COVID-19). We performed a retrospective multicentre cohort study of 9991 consecutive patients hospitalized in a major New York academic center between March 7th and June 5th, 2020 with laboratory-confirmed COVID-19. The clinical outcomes assessed included risk of hospitalization, in-hospital mortality, risk of intensive care unit (ICU) admission, and need for mechanical ventilation among smokers (current and former). Multivariable logistic regression and propensity score models were built to adjust for potential confounders. Among 9991 consecutive patients diagnosed with COVID-19, 2212 (22.1%) patients were self-reported smokers (406 current and 1806 former). Current smoking was not associated with an increased risk of hospitalization (propensity score [PS]-adjusted OR 0.91; p = .46), in-hospital mortality (PS-OR 0.77; p = .12), ICU admission (PS-OR 1.18; p = .37), or intubation (PS-OR 1.04; p = .85). Similarly, former smoking was not associated with an increased risk of hospitalization (PS-OR 0.88; p = .11), in-hospital mortality (PS-OR 1.03; p = .78), ICU admission (PS-OR 1.03; p = .95), or intubation (PS-OR 0.93; p = .57). Furthermore, smoking (current or former) was not associated with an increased risk of hospitalization (PS-OR 0.85; p = .05), in-hospital mortality (PS-OR 0.94; p = .49), ICU admission (PS-OR 0.86; p = .17), or intubation (PS-OR 0.79; p = .06). Smoking is a well-known risk factor associated with greater susceptibility and subsequent increased severity of respiratory infections. In the current COVID-19 pandemic, smokers may have increased risk and severe pneumonia. In the current COVID-19 pandemic, smokers are believed to have an increased risk of mortality as well as severe pneumonia. However, in our analysis of real-world clinical data, smoking was not associated with increased in-patient mortality in COVID-19 pneumonia, in accordance with prior reports.


Asunto(s)
COVID-19/mortalidad , Cuidados Críticos/estadística & datos numéricos , Fumar/mortalidad , COVID-19/patología , Síndrome de Liberación de Citoquinas/patología , Femenino , Mortalidad Hospitalaria , Hospitalización/estadística & datos numéricos , Humanos , Inflamación/patología , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos , SARS-CoV-2
6.
Artículo en Inglés | MEDLINE | ID: mdl-33439117

RESUMEN

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter. The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).


Asunto(s)
Bivalvos/microbiología , Gammaproteobacteria/clasificación , Branquias/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Gammaproteobacteria/aislamiento & purificación , Fijación del Nitrógeno , Océano Pacífico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Washingtón , Madera
7.
Int J Syst Evol Microbiol ; 70(4): 2388-2394, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32100688

RESUMEN

A cellulolytic, aerobic, gammaproteobacterium, designated strain Bs02T, was isolated from the gills of a marine wood-boring mollusc, Bankia setacea (Bivalvia: Teredinidae). The cells are Gram-stain-negative, slightly curved motile rods (2-5×0.4-0.6 µm) that bear a single polar flagellum and are capable of heterotrophic growth in a simple mineral medium supplemented with cellulose as a sole source of carbon and energy. Cellulose, carboxymethylcellulose, xylan, cellobiose and a variety of sugars also support growth. Strain Bs02T requires combined nitrogen for growth. Temperature, pH and salinity optima (range) for growth were 20 °C (range, 10-30 °C), 8.0 (pH 6.5-8.5) and 0.5 M NaCl (range, 0.0-0.8 M), respectively when grown on 0.5 % (w/v) galactose. Strain Bs02T does not require magnesium and calcium ion concentrations reflecting the proportions found in seawater. The genome size is approximately 4.03 Mbp and the DNA G+C content of the genome is 47.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences, and on conserved protein-coding sequences, show that strain Bs02T forms a well-supported clade with Teredinibacter turnerae. Average nucleotide identity and percentage of conserved proteins differentiate strain Bs02T from Teredinibacter turnerae at threshold values exceeding those proposed to distinguish bacterial species but not genera. These results indicate that strain Bs02T represents a novel species in the previously monotypic genus Teredinibacter for which the name Teredinibacter waterburyi sp. nov. is proposed. The strain has been deposited under accession numbers ATCC TSD-120T and KCTC 62963T.


Asunto(s)
Bivalvos/microbiología , Gammaproteobacteria/clasificación , Branquias/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Gammaproteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Madera
8.
Phys Biol ; 16(4): 046005, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30943453

RESUMEN

Meiotic homolog pairing involves associations between homologous DNA regions scattered along the length of a chromosome. When homologs associate, they tend to do so by a processive zippering process, which apparently results from avidity effects. Using a computational model, we show that this avidity-driven processive zippering reduces the selectivity of pairing. When active random forces are applied to telomeres, this drop in selectivity is eliminated in a force-dependent manner. Further simulations suggest that active telomere forces are engaged in a tug-of-war against zippering, which can be interpreted as a Brownian ratchet with a stall force that depends on the dissociation constant of pairing. When perfectly homologous regions of high affinity compete with homeologous regions of lower affinity, the affinity difference can be amplified through this tug of war effect provided the telomere force acts in a range that is strong enough to oppose zippering of homeologs while still permitting zippering of correct homologs. The degree of unzippering depends on the radius of the nucleus, such that complete unzippering of homeologous regions can only take place if the nucleus is large enough to pull the two chromosomes completely apart. A picture of meiotic pairing thus emerges that is fundamentally mechanical in nature, possibly explaining the purpose of active telomere forces, increased nuclear diameter, and the presence of 'Maverick' chromosomes in meiosis.


Asunto(s)
Emparejamiento Cromosómico/fisiología , Simulación por Computador , Modelos Biológicos , Telómero/metabolismo , Fenómenos Biofísicos , Cromosomas/metabolismo , Meiosis/fisiología , Termodinámica
10.
J Cell Sci ; 129(6): 1271-82, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26826184

RESUMEN

Meiotic progression requires exquisitely coordinated translation of maternal messenger (m)RNA that has accumulated during oocyte growth. A major regulator of this program is the cytoplasmic polyadenylation element binding protein 1 (CPEB1). However, the temporal pattern of translation at different meiotic stages indicates the function of additional RNA binding proteins (RBPs). Here, we report that deleted in azoospermia-like (DAZL) cooperates with CPEB1 to regulate maternal mRNA translation. Using a strategy that monitors ribosome loading onto endogenous mRNAs and a prototypic translation target, we show that ribosome loading is induced in a DAZL- and CPEB1-dependent manner, as the oocyte reenters meiosis. Depletion of the two RBPs from oocytes and mutagenesis of the 3' untranslated regions (UTRs) demonstrate that both RBPs interact with the Tex19.1 3' UTR and cooperate in translation activation of this mRNA. We observed a synergism between DAZL and cytoplasmic polyadenylation elements (CPEs) in the translation pattern of maternal mRNAs when using a genome-wide analysis. Mechanistically, the number of DAZL proteins loaded onto the mRNA and the characteristics of the CPE might define the degree of cooperation between the two RBPs in activating translation and meiotic progression.


Asunto(s)
Oocitos/citología , Oocitos/metabolismo , Oogénesis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Meiosis , Ratones Endogámicos C57BL , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética
11.
Vet Pathol ; 55(4): 572-583, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29665753

RESUMEN

Molar apical elongation (MAE) was the leading cause for euthanasia or death in a captive breeding colony of endangered Amargosa voles ( Microtus californicus scirpensis). Clinical signs included ocular discharge, abnormal mastication, dyspnea, abnormal mentation, weight loss, and death. Although the severity varied, all molars in all quadrants were affected. When severe, the overgrown molar reserve crown and apex protruded into the nasal meatuses, the orbit, the calvarial vault and through the ventral margin of the mandible. Overall prevalence in the colony was 63% (92/146 voles) and increased to 77% in aged voles (>1 year). Mean age of onset was 5.3 months (1.7-11.2 months). Progression to extreme severity occurred over 1 to 3 months. Mean survival was 10.9 months (7.1-21.7 months). Histologically, the lesion was characterized by odontogenic hyperplasia and dysplasia. MAE was also documented in museum specimens of 2 other M. californicus subspecies ( M. californicus californicus, M. californicus vallicola) and 3 other Microtus species ( M. montanus, M. pennsylvanicus, M. socialis). In the M. californicus californicus collection, overall prevalence was 35.1% (129/368 skulls) and increased to 77.3% in aged voles (>1 year). A probable genetic influence was identified in the museum collection of M. californicus californicus. The etiopathogenesis of MAE is likely multifactorial, due to (1) inherent continuous odontogenic proliferation, (2) inadequate occlusal attrition, and (3) possible heritable disease susceptibility. In captivity, dietary or other management of occlusal attrition to prevent or delay MAE is a fundamental concern.


Asunto(s)
Odontodisplasia/veterinaria , Enfermedades de los Roedores/diagnóstico por imagen , Animales , Arvicolinae , Cruzamiento , Femenino , Masculino , Diente Molar/diagnóstico por imagen , Diente Molar/patología , Odontodisplasia/diagnóstico por imagen , Odontodisplasia/patología , Enfermedades de los Roedores/patología , Microtomografía por Rayos X/veterinaria
12.
PLoS Genet ; 11(8): e1005478, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26305689

RESUMEN

Meiotic recombination involves the repair of double-strand break (DSB) precursors as crossovers (COs) or noncrossovers (NCOs). The proper number and distribution of COs is critical for successful chromosome segregation and formation of viable gametes. In budding yeast the majority of COs occurs through a pathway dependent on the ZMM proteins (Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3), which form foci at CO-committed sites. Here we show that the DNA-damage-response kinase Tel1/ATM limits ZMM-independent recombination. By whole-genome mapping of recombination products, we find that lack of Tel1 results in higher recombination and reduced CO interference. Yet the number of Zip3 foci in tel1Δ cells is similar to wild type, and these foci show normal interference. Analysis of recombination in a tel1Δ zip3Δ double mutant indicates that COs are less dependent on Zip3 in the absence of Tel1. Together these results reveal that in the absence of Tel1, a significant proportion of COs occurs through a non-ZMM-dependent pathway, contributing to a CO landscape with poor interference. We also see a significant change in the distribution of all detectable recombination products in the absence of Tel1, Sgs1, Zip3, or Msh4, providing evidence for altered DSB distribution. These results support the previous finding that DSB interference depends on Tel1, and further suggest an additional level of DSB interference created through local repression of DSBs around CO-designated sites.


Asunto(s)
Intercambio Genético , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Técnicas de Inactivación de Genes , Proteínas Asociadas a Microtúbulos/fisiología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina-Proteína Ligasas/fisiología
13.
Proc Natl Acad Sci U S A ; 112(9): E947-56, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730886

RESUMEN

Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin-dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos , ADN Mitocondrial , Genoma Mitocondrial/fisiología , Dinámicas Mitocondriales/fisiología , Saccharomyces cerevisiae/fisiología , Actinas/genética , Actinas/metabolismo , Ciclo Celular , ADN de Hongos/biosíntesis , ADN de Hongos/genética , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/genética , Variación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
PLoS Genet ; 10(10): e1004690, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25329811

RESUMEN

Crossovers (COs) play a critical role in ensuring proper alignment and segregation of homologous chromosomes during meiosis. How the cell balances recombination between CO vs. noncrossover (NCO) outcomes is not completely understood. Further lacking is what constrains the extent of DNA repair such that multiple events do not arise from a single double-strand break (DSB). Here, by interpreting signatures that result from recombination genome-wide, we find that synaptonemal complex proteins promote crossing over in distinct ways. Our results suggest that Zip3 (RNF212) promotes biased cutting of the double Holliday-junction (dHJ) intermediate whereas surprisingly Msh4 does not. Moreover, detailed examination of conversion tracts in sgs1 and mms4-md mutants reveal distinct aberrant recombination events involving multiple chromatid invasions. In sgs1 mutants, these multiple invasions are generally multichromatid involving 3-4 chromatids; in mms4-md mutants the multiple invasions preferentially resolve into one or two chromatids. Our analysis suggests that Mus81/Mms4 (Eme1), rather than just being a minor resolvase for COs is crucial for both COs and NCOs in preventing chromosome entanglements by removing 3'- flaps to promote second-end capture. Together our results force a reevaluation of how key recombination enzymes collaborate to specify the outcome of meiotic DNA repair.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Meiosis , RecQ Helicasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromátides/metabolismo , Segregación Cromosómica , Roturas del ADN de Doble Cadena , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas de ADN Solapado/genética , Mutación , RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
PLoS Genet ; 10(1): e1004005, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24465215

RESUMEN

Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.


Asunto(s)
Proteínas de Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Meiosis/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromátides/genética , Segregación Cromosómica/genética , Reparación del ADN/genética , Regulación Fúngica de la Expresión Génica , Recombinación Homóloga/genética , Mutación , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/genética , Esporas/crecimiento & desarrollo
16.
Proc Natl Acad Sci U S A ; 111(47): E5096-104, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385629

RESUMEN

Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.


Asunto(s)
Bacterias/clasificación , Digestión , Conducta Alimentaria , Branquias/microbiología , Moluscos/metabolismo , Madera , Animales , Metagenoma , Datos de Secuencia Molecular , Filogenia
17.
Dev Biol ; 403(1): 69-79, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25889274

RESUMEN

Quantitative analysis of tissues and organs can reveal large-scale patterning as well as the impact of perturbations and aging on biological architecture. Here we develop tools for imaging of single cells in intact organs and computational approaches to assess spatial relationships in 3D. In the mouse ovary, we use nuclear volume of the oocyte to read out quiescence or growth of oocyte-somatic cell units known as follicles. This in-ovary quantification of non-growing follicle dynamics from neonate to adult fits a mathematical function, which corroborates the model of fixed oocyte reserve. Mapping approaches show that radial organization of folliculogenesis established in the newborn ovary is preserved through adulthood. By contrast, inter-follicle clustering increases during aging with different dynamics depending on size. These broadly applicable tools can reveal high dimensional phenotypes and age-related architectural changes in other organs. In the adult mouse pancreas, we find stochastic radial organization of the islets of Langerhans but evidence for localized interactions among the smallest islets.


Asunto(s)
Imagenología Tridimensional/métodos , Islotes Pancreáticos/fisiología , Oocitos/fisiología , Folículo Ovárico/fisiología , Análisis de la Célula Individual/métodos , Envejecimiento , Algoritmos , Animales , Femenino , Islotes Pancreáticos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Oocitos/ultraestructura , Folículo Ovárico/ultraestructura
18.
Phys Biol ; 13(2): 026003, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27046097

RESUMEN

The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.


Asunto(s)
Emparejamiento Cromosómico , Meiosis , Membrana Nuclear/metabolismo , Telómero/metabolismo , Animales , Cromatina/metabolismo , Cromosomas/metabolismo , Difusión , Humanos , Modelos Biológicos , Simulación de Dinámica Molecular , Movimiento (Física)
19.
PLoS Genet ; 9(10): e1003932, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204324

RESUMEN

Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis).


Asunto(s)
Segregación Cromosómica/genética , Endodesoxirribonucleasas/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Complejo Sinaptonémico/genética , Alelos , Emparejamiento Cromosómico/genética , Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Endodesoxirribonucleasas/metabolismo , Conversión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Homeostasis/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(43): 17344-9, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24106307

RESUMEN

Four-dimensional fluorescence microscopy--which records 3D image information as a function of time--provides an unbiased way of tracking dynamic behavior of subcellular components in living samples and capturing key events in complex macromolecular processes. Unfortunately, the combination of phototoxicity and photobleaching can severely limit the density or duration of sampling, thereby limiting the biological information that can be obtained. Although widefield microscopy provides a very light-efficient way of imaging, obtaining high-quality reconstructions requires deconvolution to remove optical aberrations. Unfortunately, most deconvolution methods perform very poorly at low signal-to-noise ratios, thereby requiring moderate photon doses to obtain acceptable resolution. We present a unique deconvolution method that combines an entropy-based regularization function with kernels that can exploit general spatial characteristics of the fluorescence image to push the required dose to extreme low levels, resulting in an enabling technology for high-resolution in vivo biological imaging.


Asunto(s)
Entropía , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Relación Señal-Ruido , Algoritmos , Animales , Línea Celular , Modelos Moleculares , Modelos Teóricos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA