Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 41(39): 8262-8277, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34413203

RESUMEN

Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.


Asunto(s)
Cocaína/administración & dosificación , Ansia/efectos de los fármacos , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/metabolismo , Animales , Calcio/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Núcleo Accumbens/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Autoadministración
2.
Artículo en Inglés | MEDLINE | ID: mdl-38935096

RESUMEN

RATIONALE: Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES: We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS: We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS: These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.

3.
eNeuro ; 10(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792361

RESUMEN

Relapse is a major problem in treating methamphetamine use disorder. "Incubation of craving" during abstinence is a rat model for persistence of vulnerability to craving and relapse. While methamphetamine incubation has previously been demonstrated in male and female rats, it has not been demonstrated after withdrawal periods greater than 51 d and most mechanistic work used males. Here, we address both gaps. First, although methamphetamine intake was higher in males during self-administration training (6 h/d × 10 d), incubation was similar in males and females, with "incubated" craving persisting through withdrawal day (WD)100. Second, using whole-cell patch-clamp recordings in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) core, we assessed synaptic levels of calcium-permeable AMPA receptors (CP-AMPARs), as their elevation is required for expression of incubation in males. In both sexes, compared with saline-self-administering controls, CP-AMPAR levels were significantly higher in methamphetamine rats across withdrawal, although this was less pronounced in WD100-135 rats than WD15-35 or WD40-75 methamphetamine rats. We also examined membrane properties and NMDA receptor (NMDAR) transmission. In saline controls, MSNs from males exhibited lower excitability than females. This difference was eliminated after incubation because of increased excitability of MSNs from males. NMDAR transmission did not differ between sexes and was not altered after incubation. In conclusion, incubation persists for longer than previously described and equally persistent CP-AMPAR plasticity in NAc core occurs in both sexes. Thus, abstinence-related synaptic plasticity in NAc is similar in males and females although other methamphetamine-related behaviors and neuroadaptations show differences.


Asunto(s)
Metanfetamina , Núcleo Accumbens , Ratas , Masculino , Femenino , Animales , Núcleo Accumbens/metabolismo , Metanfetamina/farmacología , Ratas Sprague-Dawley , Ansia/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Recurrencia , Autoadministración
4.
Biology (Basel) ; 12(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37508383

RESUMEN

Mitochondrial fission and fusion are required for maintaining functional mitochondria. The mitofusins (MFN1 and MFN2) are known for their roles in mediating mitochondrial fusion. Recently, MFN2 has been implicated in other important cellular functions, such as mitophagy, mitochondrial motility, and coordinating endoplasmic reticulum-mitochondria communication. In humans, over 100 MFN2 mutations are associated with a form of inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Here we describe an ENU-induced mutant mouse line with a recessive neuromuscular phenotype. Behavioral screening showed progressive weight loss and rapid deterioration of motor function beginning at 8 weeks. Mapping and sequencing revealed a missense mutation in exon 18 of Mfn2 (T1928C; Leu643Pro), within the transmembrane domain. Compared to wild-type and heterozygous littermates, Mfn2L643P/L643P mice exhibited diminished rotarod performance and decreases in activity in the open field test, muscular endurance, mean mitochondrial diameter, sensory tests, mitochondrial DNA content, and MFN2 protein levels. However, tests of peripheral nerve physiology and histology were largely normal. Mutant leg bones had reduced cortical bone thickness and bone area fraction. Together, our data indicate that Mfn2L643P causes a recessive motor phenotype with mild bone and mitochondrial defects in mice. Lack of apparent nerve pathology notwithstanding, this is the first reported mouse model with a mutation in the transmembrane domain of the protein, which may be valuable for researchers studying MFN2 biology.

5.
Biol Psychiatry ; 92(11): 871-879, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35871097

RESUMEN

BACKGROUND: Cue-induced cocaine craving progressively intensifies (incubates) during abstinence from cocaine self-administration. Expression of incubated cocaine craving depends on elevated calcium-permeable AMPA receptors (CP-AMPARs) on medium spiny neurons in the nucleus accumbens (NAc) core. After incubation has occurred, stimulation of NAc metabotropic glutamate 1 (mGlu1) receptors or systemic administration of mGlu1 positive allosteric modulators removes CP-AMPARs from NAc synapses via dynamin-dependent internalization (mGlu1 long-term depression [LTD]) and thereby reduces incubated cocaine craving. Because mGlu1 positive allosteric modulators are potential therapeutics for cocaine craving, it is important to further define the mechanism triggering this mGlu1-LTD. METHODS: Male and female rats self-administered saline or cocaine (10 days) using a long access regimen (6 h/day). Following ≥40 days of abstinence, we assessed the ability of an mGlu1 positive allosteric modulator to inhibit expression of incubated craving and remove CP-AMPARs from NAc synapses under control conditions, after blocking the integrated stress response (ISR), or after knocking down oligophrenin-1, a mediator of the ISR that can promote AMPAR endocytosis. AMPAR transmission in NAc medium spiny neurons was assessed with ex vivo slice recordings. RESULTS: mGlu1 stimulation reduced cue-induced craving and removed synaptic CP-AMPARs. When the ISR was blocked prior to mGlu1 stimulation, there was no reduction in cue-induced craving, nor were CP-AMPARs removed from the synapse. Further, selective knockdown of oligophrenin-1 blocked mGlu1-LTD. CONCLUSIONS: Our results indicate that mGlu1-LTD in the NAc and consequently the reduction of cue-induced seeking occur through activation of the ISR, which induces translation of oligophrenin-1. We also demonstrate CP-AMPAR accumulation and mGlu1 reversal in female rats, as previously shown in male rats.


Asunto(s)
Cocaína , Proteínas del Citoesqueleto , Proteínas Activadoras de GTPasa , Plasticidad Neuronal , Animales , Femenino , Masculino , Ratas , Calcio/metabolismo , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Autoadministración , Proteínas Activadoras de GTPasa/metabolismo , Proteínas del Citoesqueleto/metabolismo
6.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34544759

RESUMEN

Relapse is a major challenge to the treatment of substance use disorders. A progressive increase in cue-induced drug craving, termed incubation of craving, is observed after withdrawal from multiple drugs of abuse in humans and rodents. Incubation of cocaine craving involves the strengthening of excitatory synapses onto nucleus accumbens (NAc) medium spiny neurons via postsynaptic accumulation of high-conductance Ca2+-permeable AMPA receptors. This enhances reactivity to drug-associated cues and is required for the expression of incubation. Additionally, incubation of cocaine craving is associated with loss of the synaptic depression normally triggered by stimulation of metabotropic glutamate receptor 5 (mGlu5), leading to endocannabinoid production, and expressed presynaptically via cannabinoid receptor 1 activation. Previous studies have found alterations in mGlu5 and Homer proteins associated with the loss of this synaptic depression. Here we conducted coimmunoprecipitation studies to investigate associations of diacylglycerol lipase-α (DGL), which catalyzes formation of the endocannabinoid 2-arachidonylglycerol (2-AG), with mGlu5 and Homer proteins. Although these interactions were unchanged in the NAc core at incubation-relevant withdrawal times, the association of DGL with total and phosphorylated Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) and CaMKIIß was increased. This would be predicted, based on other studies, to inhibit DGL activity and therefore 2-AG production. This was confirmed by measuring DGL enzymatic activity. However, the magnitude of DGL inhibition did not correlate with the magnitude of incubation of craving for individual rats. These results suggest that CaMKII contributes to the loss of mGlu5-dependent synaptic depression after incubation, but the functional significance of this loss remains unclear.


Asunto(s)
Cocaína , Síndrome de Abstinencia a Sustancias , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Ansia , Lipoproteína Lipasa , Núcleo Accumbens , Ratas , Ratas Sprague-Dawley
7.
Neuropharmacology ; 186: 108452, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33444640

RESUMEN

Many studies have demonstrated that negative allosteric modulators (NAM) of metabotropic glutamate receptor 5 (mGlu5) reduce cocaine and methamphetamine seeking in extinction-reinstatement animal models of addiction. Less is known about effects of mGlu5 NAMs in abstinence models, particularly for methamphetamine. We used the incubation of drug craving model, in which cue-induced craving progressively intensifies after withdrawal from drug self-administration, to conduct the first studies of the following aspects of mGlu5 function in the rat nucleus accumbens (NAc) core during abstinence from methamphetamine self-administration: 1) functionality of the major form of synaptic depression in NAc medium spiny neurons, which is induced postsynaptically via mGlu5 and expressed presynaptically via cannabinoid type 1 receptors (CB1Rs), 2) mGlu5 surface expression and physical associations between mGlu5, Homer proteins, and diacylglycerol lipase-α, and 3) the effect of systemic and intra-NAc core administration of the mGlu5 NAM 3-((2-methyl-4-)ethynyl)pyridine (MTEP) on expression of incubated methamphetamine craving. We found that mGlu5/CB1R-dependent synaptic depression was lost during the rising phase of methamphetamine incubation but then recovered, in contrast to its persistent impairment during the plateau phase of incubation of cocaine craving. Furthermore, whereas the cocaine-induced impairment was accompanied by reduced mGlu5 levels and mGlu5-Homer associations, this was not the case for methamphetamine. Systemic MTEP reduced incubated methamphetamine seeking, but also reduced inactive hole nose-pokes and locomotion, while intra-NAc core MTEP had no significant effects. These findings provide the first insight into the role of mGlu5 in the incubation of methamphetamine craving and reveal differences from incubation of cocaine craving.


Asunto(s)
Ansia/efectos de los fármacos , Metanfetamina/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Ansia/fisiología , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Autoadministración
8.
Neuropsychopharmacology ; 44(9): 1534-1541, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146278

RESUMEN

Cue-induced drug craving progressively intensifies after withdrawal from self-administration of cocaine, methamphetamine, and other drugs of abuse, a phenomenon termed incubation of craving. For cocaine and methamphetamine, expression of incubated craving ultimately depends on strengthening of nucleus accumbens (NAc) synapses through an accumulation of high conductance Ca2+-permeable AMPA receptors (CP-AMPARs) that is detectable with electrophysiological approaches. This study sought to further characterize glutamate receptor adaptations in NAc core during methamphetamine incubation. Previous biochemical studies revealed that the CP-AMPARs accumulating after cocaine incubation are mainly homomeric GluA1 receptors and that their accumulation is reflected by increased cell surface GluA1. Here, for methamphetamine, we observed no significant change in surface or total GluA1 (GluA2 and GluA3 were also unchanged). Nonetheless, GluA1 translation was elevated after incubation of methamphetamine craving, as recently found for cocaine. Additionally, for cocaine, we previously observed a withdrawal-dependent decrease in mGlu1 surface expression that precedes and enables CP-AMPAR accumulation and incubation of craving, reflecting weakening of mGlu1-dependent mechanisms that normally limit synaptic CP-AMPAR levels in the NAc core. Here, we observed no change in surface or total mGlu1 protein or its coupling to Homer scaffolding proteins after methamphetamine withdrawal, nor did elevation of mGlu1 tone through repeated injections of an mGlu1-positive allosteric modulator delay incubation of craving. These findings suggest a common role for increased GluA1 translation, but not decreased mGlu1 function, in the incubation of methamphetamine and cocaine craving. We speculate that increased GluA1 translation near synapses may drive formation and synaptic insertion of homomeric GluA1 receptors in the absence of detectable changes in GluA1 protein levels.


Asunto(s)
Ansia/fisiología , Proteínas de Andamiaje Homer/metabolismo , Metanfetamina , Núcleo Accumbens/metabolismo , Receptores AMPA/genética , Receptores de Glutamato Metabotrópico/genética , Regulación Alostérica , Trastornos Relacionados con Anfetaminas/genética , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Señales (Psicología) , Biosíntesis de Proteínas , Ratas , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA