Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 174(5): 1143-1157.e17, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078703

RESUMEN

Viruses employ elaborate strategies to coopt the cellular processes they require to replicate while simultaneously thwarting host antiviral responses. In many instances, how this is accomplished remains poorly understood. Here, we identify a protein, F17 encoded by cytoplasmically replicating poxviruses, that binds and sequesters Raptor and Rictor, regulators of mammalian target of rapamycin complexes mTORC1 and mTORC2, respectively. This disrupts mTORC1-mTORC2 crosstalk that coordinates host responses to poxvirus infection. During infection with poxvirus lacking F17, cGAS accumulates together with endoplasmic reticulum vesicles around the Golgi, where activated STING puncta form, leading to interferon-stimulated gene expression. By contrast, poxvirus expressing F17 dysregulates mTOR, which localizes to the Golgi and blocks these antiviral responses in part through mTOR-dependent cGAS degradation. Ancestral conservation of Raptor/Rictor across eukaryotes, along with expression of F17 across poxviruses, suggests that mTOR dysregulation forms a conserved poxvirus strategy to counter cytosolic sensing while maintaining the metabolic benefits of mTOR activity.


Asunto(s)
Citosol/química , Poxviridae/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Homeostasis , Humanos , Inmunidad Innata , Interferones/metabolismo , Cinética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
2.
Nature ; 587(7832): 109-114, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32908309

RESUMEN

Despite its size and rigidity, the cell nucleus can be moved or reorganized by cytoskeletal filaments under various conditions (for example, during viral infection)1-11. Moreover, whereas chromatin organizes into non-random domains12, extensive heterogeneity at the single-cell level13 means that precisely how and why nuclei reorganize remains an area of intense investigation. Here we describe convolutional neural network-based automated cell classification and analysis pipelines, which revealed the extent to which human cytomegalovirus generates nuclear polarity through a virus-assembled microtubule-organizing centre. Acetylation of tubulin enables microtubules emanating from this centre to rotate the nucleus by engaging cytoplasmically exposed dynein-binding domains in the outer nuclear membrane protein nesprin-2G, which polarizes the inner nuclear membrane protein SUN1. This in turn creates intranuclear polarity in emerin, and thereby controls nuclear actin filaments that spatially segregate viral DNA from inactive histones and host DNA, maximizing virus replication. Our findings demonstrate the extent to which viruses can control the nucleus from the cytoplasm.


Asunto(s)
Núcleo Celular/metabolismo , Polaridad Celular , Citomegalovirus/fisiología , Citoplasma/metabolismo , Citoplasma/virología , Acetilación , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Línea Celular , Núcleo Celular/química , ADN Viral/metabolismo , Dineínas/metabolismo , Histonas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Redes Neurales de la Computación , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Rotación , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Replicación Viral
3.
J Virol ; 97(1): e0172322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533954

RESUMEN

Most human influenza vaccine antigens are produced in fertilized chicken eggs. Recent H3N2 egg-based vaccine antigens have limited effectiveness, partially due to egg-adaptive substitutions that alter the antigenicity of the hemagglutinin (HA) protein. The nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP) vaccine platform is a promising alternative for egg-based influenza vaccines because mRNA-LNP-derived antigens are not subject to adaptive pressures that arise during the production of antigens in chicken eggs. Here, we compared H3N2-specific antibody responses in mice vaccinated with either 3c.2A H3-encoding mRNA-LNP or a conventional egg-based Fluzone vaccine (which included an egg-adapted 3c.2A antigen) supplemented with an MF59-like adjuvant. We tested mRNA-LNP encoding wild-type and egg-adapted H3 antigens. We found that mRNA-LNP encoding wild-type H3 elicited antibodies that neutralized the wild-type 3c.2A H3N2 virus more effectively than antibodies elicited by mRNA-LNP encoding egg-adapted H3 or the egg-based Fluzone vaccine. mRNA-LNP expressing either wild-type or egg-adapted H3 protected mice against infection with the wild-type 3c2.A H3N2, whereas the egg-based Fluzone vaccine did not. We found that both mRNA-LNP vaccines elicited high levels of group 2 HA stalk-reactive antibodies, which likely contributed to protection in vivo. Our studies indicate that nucleoside-modified mRNA-LNP-based vaccines can circumvent problems associated with egg adaptations with recent 3c2.A H3N2 viruses. IMPORTANCE This study shows that the nucleoside-modified mRNA-LNP vaccine platform is a promising alternative for egg-based influenza vaccines. We show that mRNA-LNP vaccines expressing H3 antigens elicit high levels of antibodies in mice and protect against H3N2 influenza virus infection.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Nucleósidos , Vacunas de ARNm , Animales , Humanos , Ratones , Anticuerpos Antivirales , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , ARN Mensajero/genética , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología
4.
J Virol ; 95(18): e0082121, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34191581

RESUMEN

While it is well established that microtubules (MTs) facilitate various stages of virus replication, how viruses actively control MT dynamics and functions remains less well understood. Recent work has begun to reveal how several viruses exploit End-Binding (EB) proteins and their associated microtubule plus-end tracking proteins (+TIPs), in particular to enable loading of viral particles onto MTs for retrograde transport during early stages of infection. Distinct from other viruses studied to date, at mid- to late stages of its unusually protracted replication cycle, human cytomegalovirus (HCMV) increases the expression of all three EB family members. This occurs coincident with the formation of a unique structure, termed the assembly compartment (AC), which serves as a Golgi-derived MT organizing center. Together, the AC and distinct EB proteins enable HCMV to increase the formation of dynamic and acetylated microtubule subsets to regulate distinct aspects of the viral replication cycle. Here, we reveal that HCMV also exploits EB-independent +TIP pathways by specifically increasing the expression of transforming acidic coiled coil protein 3 (TACC3) to recruit the MT polymerase, chTOG, from initial sites of MT nucleation in the AC out into the cytosol, thereby increasing dynamic MT growth. Preventing TACC3 increases or depleting chTOG impaired MT polymerization, resulting in defects in early versus late endosome organization in and around the AC as well as defects in viral trafficking and spread. Our findings provide the first example of a virus that actively exploits EB-independent +TIP pathways to regulate MT dynamics and control late stages of virus replication. IMPORTANCE Diverse viruses rely on host cell microtubule networks to transport viral particles within the dense cytoplasmic environment and to control the broader architecture of the cell to facilitate their replication. However, precisely how viruses regulate the dynamic behavior and function of microtubule filaments remains poorly defined. We recently showed that the assembly compartment (AC) formed by human cytomegalovirus (HCMV) acts as a Golgi-derived microtubule organizing center. Here, we show that at mid- to late stages of infection, HCMV increases the expression of transforming acidic coiled coil protein 3 (TACC3) to control the localization of the microtubule polymerase, chTOG. This, in turn, enables HCMV to generate dynamic microtubule subsets that organize endocytic vesicles in and around the AC and facilitate the transport of new viral particles released into the cytosol. Our findings reveal the first instance of viral targeting of TACC3 to control microtubule dynamics and virus spread.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Fibroblastos/virología , Aparato de Golgi/virología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Replicación Viral , Células Cultivadas , Dermis/metabolismo , Dermis/virología , Fibroblastos/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/virología
5.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826368

RESUMEN

H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple non-human mammalian species1,2. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera3-6. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here we use pseudovirus deep mutational scanning7 to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine strains. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.

6.
Nat Commun ; 15(1): 4350, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782954

RESUMEN

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Asunto(s)
Anticuerpos Antivirales , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Nanopartículas , Infecciones por Orthomyxoviridae , Vacunas de ARNm , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Femenino , Ratones , Nanopartículas/química , Masculino , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Vacunas de ARNm/inmunología , Anticuerpos Neutralizantes/inmunología , Ratones Endogámicos BALB C , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Gripe Aviar/virología , Humanos , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Aves/virología , Lípidos/química , Liposomas
7.
bioRxiv ; 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37162920

RESUMEN

Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. We generated an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. We show that the vaccine is immunogenic in mice and ferrets and prevents morbidity and mortality of ferrets following 2.3.4.4b H5N1 challenge.

8.
Cell Rep ; 39(9): 110897, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649381

RESUMEN

Influenza viruses circulated at very low levels during the beginning of the COVID-19 pandemic, and population immunity against these viruses is low. An H3N2 strain (3C.2a1b.2a2) with a hemagglutinin (HA) that has several substitutions relative to the 2021-22 H3N2 vaccine strain is dominating the 2021-22 Northern Hemisphere influenza season. Here, we show that one of these substitutions eliminates a key glycosylation site on HA and alters sialic acid binding. Using glycan array profiling, we show that the 3C.2a1b.2a2 H3 maintains binding to an extended biantennary sialoside and replicates to high titers in human airway cells. We find that antibodies elicited by the 2021-22 Northern Hemisphere influenza vaccine poorly neutralize the 3C.2a1b.2a2 H3N2 strain. Together, these data indicate that 3C.2a1b.2a2 H3N2 viruses efficiently replicate in human cells and escape vaccine-elicited antibodies.


Asunto(s)
COVID-19 , Gripe Humana , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Hemaglutininas , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Pandemias , Estaciones del Año
9.
Science ; 378(6622): 899-904, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36423275

RESUMEN

Seasonal influenza vaccines offer little protection against pandemic influenza virus strains. It is difficult to create effective prepandemic vaccines because it is uncertain which influenza virus subtype will cause the next pandemic. In this work, we developed a nucleoside-modified messenger RNA (mRNA)-lipid nanoparticle vaccine encoding hemagglutinin antigens from all 20 known influenza A virus subtypes and influenza B virus lineages. This multivalent vaccine elicited high levels of cross-reactive and subtype-specific antibodies in mice and ferrets that reacted to all 20 encoded antigens. Vaccination protected mice and ferrets challenged with matched and mismatched viral strains, and this protection was at least partially dependent on antibodies. Our studies indicate that mRNA vaccines can provide protection against antigenically variable viruses by simultaneously inducing antibodies against multiple antigens.


Asunto(s)
Virus de la Influenza A , Virus de la Influenza B , Infecciones por Orthomyxoviridae , Vacunas Combinadas , Vacunas Sintéticas , Vacunas de ARNm , Animales , Ratones , Hurones , Nucleósidos/química , Nucleósidos/genética , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Combinadas/genética , Vacunas Combinadas/inmunología , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Reacciones Cruzadas
10.
Cell Rep ; 30(1): 269-283.e6, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914393

RESUMEN

End-binding proteins (EBs) are widely viewed as master regulators of microtubule dynamics and function. Here, we show that while EB1 mediates the dynamic microtubule capture of herpes simplex virus type 1 (HSV-1) in fibroblasts, in neuronal cells, infection occurs independently of EBs through stable microtubules. Prompted by this, we find that transforming acid coiled-coil protein 3 (TACC3), widely studied in mitotic spindle formation, regulates the cytoplasmic localization of the microtubule polymerizing factor chTOG and influences microtubule plus-end dynamics during interphase to control infection in distinct cell types. Furthermore, perturbing TACC3 function in neuronal cells resulted in the formation of disorganized stable, detyrosinated microtubule networks and changes in cellular morphology, as well as impaired trafficking of both HSV-1 and transferrin. These trafficking defects in TACC3-depleted cells were reversed by the depletion of kinesin-1 heavy chains. As such, TACC3 is a critical regulator of interphase microtubule dynamics and stability that influences kinesin-1-based cargo trafficking.


Asunto(s)
Interfase , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Femenino , Humanos , Recién Nacido , Cinesinas/metabolismo , Masculino , Neuronas/metabolismo , Neuronas/virología , Simplexvirus/fisiología
11.
G3 (Bethesda) ; 10(9): 2975-2979, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32727926

RESUMEN

Phages infecting bacteria of the genus Staphylococcus play an important role in their host's ecology and evolution. On one hand, horizontal gene transfer from phage can encourage the rapid adaptation of pathogenic Staphylococcus enabling them to escape host immunity or access novel environments. On the other hand, lytic phages are promising agents for the treatment of bacterial infections, especially those resistant to antibiotics. As part of an ongoing effort to gain novel insights into bacteriophage diversity, we characterized the complete genome of the Staphylococcus bacteriophage Metroid, a cluster C phage with a genome size of 151kb, encompassing 254 predicted protein-coding genes as well as 4 tRNAs. A comparative genomic analysis highlights strong similarities - including a conservation of the lysis cassette - with other Staphylococcus cluster C bacteriophages, several of which were previously characterized for therapeutic applications.


Asunto(s)
Genoma Viral , Fagos de Staphylococcus , Tamaño del Genoma , Staphylococcus/genética , Fagos de Staphylococcus/genética
12.
Viruses ; 8(6)2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27294950

RESUMEN

The chikungunya virus (CHIKV) is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates with the introduction of its major vector, Aedes albopictus. CHIKV causes a disease frequently misdiagnosed as dengue fever, with potentially life-threatening symptoms that can result in a longer-term debilitating arthritis. The increasing risk of spread from endemic regions via human travel and commerce and the current absence of a vaccine put a significant proportion of the world population at risk for this disease. In this study we designed and tested hammerhead ribozymes (hRzs) targeting CHIKV structural protein genes of the RNA genome as potential antivirals both at the cellular and in vivo level. We employed the CHIKV strain 181/25, which exhibits similar infectivity rates in both Vero cell cultures and mosquitoes. Virus suppression assay performed on transformed Vero cell clones of all seven hRzs demonstrated that all are effective at inhibiting CHIKV in Vero cells, with hRz #9 and #14 being the most effective. piggyBac transformation vectors were constructed using the Ae. aegypti t-RNA(val) Pol III promoted hRz #9 and #14 effector genes to establish a total of nine unique transgenic Higgs White Eye (HWE) Ae. aegypti lines. Following confirmation of transgene expression by real-time polymerase chain reaction (RT-PCR), comparative TCID50-IFA analysis, in situ Immuno-fluorescent Assays (IFA) and analysis of salivary CHIKV titers demonstrated effective suppression of virus replication at 7 dpi in heterozygous females of each of these transgenic lines compared with control HWE mosquitoes. This report provides a proof that appropriately engineered hRzs are powerful antiviral effector genes suitable for population replacement strategies.


Asunto(s)
Aedes/virología , Antivirales/metabolismo , Virus Chikungunya/inmunología , Factores Inmunológicos/metabolismo , ARN Catalítico/metabolismo , Replicación Viral/efectos de los fármacos , Aedes/inmunología , Animales , Animales Modificados Genéticamente/inmunología , Animales Modificados Genéticamente/virología , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Glándulas Salivales/virología , Células Vero , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA