Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 379(2197): 20200211, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33775147

RESUMEN

This article provides the motivation and overview of the Collective Knowledge Framework (CK or cKnowledge). The CK concept is to decompose research projects into reusable components that encapsulate research artifacts and provide unified application programming interfaces (APIs), command-line interfaces (CLIs), meta descriptions and common automation actions for related artifacts. The CK framework is used to organize and manage research projects as a database of such components. Inspired by the USB 'plug and play' approach for hardware, CK also helps to assemble portable workflows that can automatically plug in compatible components from different users and vendors (models, datasets, frameworks, compilers, tools). Such workflows can build and run algorithms on different platforms and environments in a unified way using the customizable CK program pipeline with software detection plugins and the automatic installation of missing packages. This article presents a number of industrial projects in which the modular CK approach was successfully validated in order to automate benchmarking, auto-tuning and co-design of efficient software and hardware for machine learning and artificial intelligence in terms of speed, accuracy, energy, size and various costs. The CK framework also helped to automate the artifact evaluation process at several computer science conferences as well as to make it easier to reproduce, compare and reuse research techniques from published papers, deploy them in production, and automatically adapt them to continuously changing datasets, models and systems. The long-term goal is to accelerate innovation by connecting researchers and practitioners to share and reuse all their knowledge, best practices, artifacts, workflows and experimental results in a common, portable and reproducible format at https://cKnowledge.io/. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico'.

2.
Nat Mach Intell ; 5(7): 799-810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38706981

RESUMEN

Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA