Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003308

RESUMEN

Colorectal cancer (CRC) is the second-leading cause of cancer death, with a worldwide incidence rate constantly increasing; thus, new strategies for its prevention or treatment are needed. Here, we describe the adjuvant effect of the polyphenol-enriched fractions of cinnamon, from cinnamon bark and buds, when co-administered with a potent anticancer drug, cetuximab, used for CRC therapy. The co-administration significantly reduces the cetuximab dose required for the antiproliferative activity against colorectal cancer cell line E705, which is sensitive to EGFR-targeted therapy. The anticancer activity of these cinnamon-derived fractions, whose major components (as assessed by UPLC-HRMS analysis) are procyanidins and other flavonoids, strictly correlates with their ability to induce apoptosis in cancer cell lines through ERK activation and the mitochondrial membrane potential impairment. Due to the severe side effects of cetuximab administration, our results suggest the use of nutraceuticals based on the polyphenolic fractions of cinnamon extracts as adjuvants in the therapy of CRC.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Cinnamomum zeylanicum , Proliferación Celular , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163690

RESUMEN

Several harmful modifications in different tissues-organs, leading to relevant diseases (e.g., liver and lung diseases, neurodegeneration) are reported after exposure to cadmium (Cd), a wide environmental contaminant. This arises the question whether any common molecular signatures and/or Cd-induced modifications might represent the building block in initiating or contributing to address the cells towards different pathological conditions. To unravel possible mechanisms of Cd tissue-specificity, we have analyzed transcriptomics data from cell models representative of three major Cd targets: pulmonary (A549), hepatic (HepG2), and neuronal (SH-SY-5Y) cells. Further, we compared common features to identify any non-specific molecular signatures. The functional analysis of dysregulated genes (gene ontology and KEGG) shows GO terms related to metabolic processes significantly enriched only in HepG2 cells. GO terms in common in the three cell models are related to metal ions stress response and detoxification processes. Results from KEGG analysis show that only one specific pathway is dysregulated in a significant way in all cell models: the mineral absorption pathway. Our data clearly indicate how the molecular mimicry of Cd and its ability to cause a general metal ions dyshomeostasis represent the initial common feature leading to different molecular signatures and alterations, possibly responsible for different pathological conditions.


Asunto(s)
Cadmio/toxicidad , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Neuronas/efectos de los fármacos , Transcriptoma , Células A549 , Línea Celular Tumoral , Perfilación de la Expresión Génica , Ontología de Genes , Células Hep G2 , Humanos , Hígado/metabolismo , Pulmón/metabolismo , Neuronas/metabolismo , Especificidad de Órganos , Toxicogenética
3.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613815

RESUMEN

Oxidative stress caused by reactive oxygen species (ROS, O2•−, HO•, and H2O2) affects the aging process and the development of several diseases. A new frontier on its prevention includes functional foods with both specific probiotics and natural extracts as antioxidants. In this work, Panax ginseng C.A. Meyer berries extract was characterized for the presence of beneficial molecules (54.3% pectin-based polysaccharides and 12% ginsenosides), able to specifically support probiotics growth (OD600nm > 5) with a prebiotic index of 0.49. The administration of the extract to a probiotic consortium induced the production of short-chain fatty acids (lactic, butyric, and propionic acids) and other secondary metabolites derived from the biotransformation of Ginseng components. Healthy and tumoral colorectal cell lines (CCD841 and HT-29) were then challenged with these metabolites at concentrations of 0.1, 0.5, and 1 mg/mL. The cell viability of HT-29 decreased in a dose-dependent manner after the exposition to the metabolites, while CCD841 vitality was not affected. Regarding ROS production, the metabolites protected CCD841 cells, while ROS levels were increased in HT-29 cells, potentially correlating with the less functionality of glutathione S-transferase, catalase, and total superoxide dismutase enzymes, and a significant increase in oxidized glutathione.


Asunto(s)
Neoplasias Colorrectales , Panax , Prebióticos , Probióticos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Línea Celular Tumoral , Frutas/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Probióticos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Humanos , Células HT29
4.
Environ Res ; 192: 110292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027627

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder of the motor system. The etiology is still unknown and the pathogenesis remains unclear. ALS is familial in the 10% of cases with a Mendelian pattern of inheritance. In the remaining sporadic cases, a multifactorial origin is supposed in which several predisposing genes interact with environmental factors. The etiological role of environmental factors, such as pesticides, exposure to electromagnetic fields, and metals has been frequently investigated, with controversial findings. Studies in the past two decades have highlighted possible roles of metals, and ionic homeostasis dysregulation has been proposed as the main trigger to motor-neuron degeneration. This study aims at evaluating the possible role of environmental factors in etiopathogenesis of ALS, with a particular attention on metal contamination, focusing on the industrial Briga area in the province of Novara (Piedmont region, North Italy), characterized by: i) a higher incidence of sporadic ALS (sALS) in comparison with the entire province, and ii) the reported environmental pollution. Environmental data from surface, ground and discharge waters, and from soils were collected and specifically analyzed for metal content. Considering the significance of genetic mechanisms in ALS, a characterization for the main ALS genes has been performed to evaluate the genetic contribution for the sALS patients living in the area of study. The main findings of this study are the demonstration that in the Briga area the most common metal contaminants are Cu, Zn, Cr, Ni (widely used in tip-plating processes), that are above law limits in surface waters, discharge waters, and soil. In addition, other metals and metalloids, such as Cd, Pb, Mn, and As show a severe contamination in the same area. Results of genetic analyses show that sALS patients in the Briga area do not carry recurrent mutations or an excess of mutations in the four main ALS causative genes (SOD1, TARDBP, FUS, C9ORF72) and for ATXN2 CAG repeat locus. This study supports the hypothesis that the higher incidence of sALS in Briga area may be related to environmental metal(loid)s contamination, along with other environmental factors. Further studies, implementing analysis of genetic polymorphisms, as well as investigation with long term follow-up, may yield to key aspects into the etiology of ALS. The interplay between different approaches (environmental, chemical, epidemiological, genetic) of our work provides new insights and methodology to the comprehension of the disease etiology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/genética , Causalidad , Contaminación Ambiental , Humanos , Italia/epidemiología , Mutación
5.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639177

RESUMEN

In this paper, we report the metabolic characterization of two foci, F1 and F3, obtained at the end of Cell Transformation Assay (CTA), performed by treating C3H10T1/2Cl8 mouse embryo fibroblasts with 1 µM CdCl2 for 24 h. The elucidation of the cadmium action mechanism can be useful both to improve the in vitro CTA and to yield insights into carcinogenesis. The metabolism of the two foci was investigated through Seahorse and enzyme activity assays; mitochondria were studied in confocal microscopy and reactive oxygen species were detected by flow cytometry. The results showed that F1 focus has higher glycolytic and TCA fluxes compared to F3 focus, and a more negative mitochondrial membrane potential, so that most ATP synthesis is performed through oxidative phosphorylation. Confocal microscopy showed mitochondria crowded in the perinuclear region. On the other hand, F3 focus showed lower metabolic rates, with ATP mainly produced by glycolysis and damaged mitochondria. Overall, our results showed that cadmium treatment induced lasting metabolic alterations in both foci. Triggered by the loss of the Pasteur effect in F1 focus and by mitochondrial impairment in F3 focus, these alterations lead to a loss of coordination among glycolysis, TCA and oxidative phosphorylation, which leads to malignant transformation.


Asunto(s)
Cadmio/toxicidad , Carcinogénesis/patología , Glucólisis , Mitocondrias/patología , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Células Cultivadas , Técnicas In Vitro , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C3H , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
6.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233823

RESUMEN

The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors' activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.


Asunto(s)
Antineoplásicos/farmacología , Cetuximab/farmacología , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neuraminidasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Receptores ErbB/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos
7.
Molecules ; 23(2)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29462919

RESUMEN

This work aims to synthesize new trehalase inhibitors selective towards the insect trehalase versus the porcine trehalase, in view of their application as potentially non-toxic insecticides and fungicides. The synthesis of a new pseudodisaccharide mimetic 8, by means of a stereoselective α-glucosylation of the key pyrrolizidine intermediate 13, was accomplished. The activity of compound 8 as trehalase inhibitor towards C.riparius trehalase was evaluated and the results showed that 8 was active in the µM range and showed a good selectivity towards the insect trehalase. To reduce the overall number of synthetic steps, simpler and more flexible disaccharide mimetics 9-11 bearing a pyrrolidine nucleus instead of the pyrrolizidine core were synthesized. The biological data showed the key role of the linker chain's length in inducing inhibitory properties, since only compounds 9 (α,ß-mixture), bearing a two-carbon atom linker chain, maintained activity as trehalase inhibitors. A proper change in the glucosyl donor-protecting groups allowed the stereoselective synthesis of the ß-glucoside 9ß, which was active in the low micromolar range (IC50 = 0.78 µM) and 12-fold more potent (and more selective) than 9α towards the insect trehalase.


Asunto(s)
Disacáridos/química , Inhibidores Enzimáticos/síntesis química , Insecticidas/química , Trehalasa/antagonistas & inhibidores , Animales , Disacáridos/síntesis química , Inhibidores Enzimáticos/química , Insectos/efectos de los fármacos , Insectos/enzimología , Cinética , Especificidad por Sustrato , Porcinos , Trehalasa/química
8.
Glycobiology ; 25(8): 855-68, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25922362

RESUMEN

Several studies performed over the last decade have focused on the role of sialylation in the progression of cancer and, in particular, on the association between deregulation of sialidases and tumorigenic transformation. The plasma membrane-associated sialidase NEU3 is often deregulated in colorectal cancer (CRC), and it was shown that this enzyme co-immunoprecipitates in HeLa cells with epidermal growth factor receptor (EGFR), the molecular target of most recent monoclonal antibody-based therapies against CRC. To investigate the role of NEU3 sialidase on EGFR deregulation in CRC, we first collected data on NEU3 gene expression levels from a library of commercial colon cell lines, demonstrating that NEU3 transcription is upregulated in these cell lines. We also found EGFR to be hyperphosphorylated in all cell lines, with the exception of SW620 cells and the CCD841 normal intestinal cell line. By comparing the effects induced by overexpression of either the wild-type or the inactive mutant form of NEU3 on EGFR, we demonstrated that the active form of NEU3 enhanced receptor activation without affecting EGFR mRNA or protein expression. Moreover, through western blots and mass spectrometry analysis, we found that EGFR immunoprecipitated from cells overexpressing active NEU3, unlike the receptor from mock cells and cells overexpressing inactive NEU3, is desialylated. On the whole, our data demonstrate that, besides the already reported indirect EGFR activation through GM3, sialidase NEU3 could also play a role on EGFR activation through its desialylation.


Asunto(s)
Células Epiteliales/metabolismo , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Neuraminidasa/genética , Procesamiento Proteico-Postraduccional , Línea Celular Tumoral , Membrana Celular , Colon/metabolismo , Colon/patología , Células Epiteliales/patología , Receptores ErbB/metabolismo , Gangliósido G(M3)/metabolismo , Humanos , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Neuraminidasa/metabolismo , Fosforilación , Ácidos Siálicos/metabolismo , Transducción de Señal , Transcripción Genética
9.
Org Biomol Chem ; 13(3): 886-92, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25407551

RESUMEN

7-Deoxy-uniflorine A (6), synthesized ex novo with a straightforward and simple strategy, and the analogues 4, 5 and 7, were evaluated as potential inhibitors of insect trehalase from Chironomus riparius and Spodoptera littoralis. All the compounds were tested against porcine trehalase as the mammalian counterpart and α-amylase from human saliva as a relevant glucolytic enzyme. The aim of this work is the identification of the simplest pyrrolizidine structure necessary to impart selective insect trehalase inhibition, in order to identify new specific inhibitors that can be easily synthesized compared to our previous reports with the potential to act as non-toxic insecticides and/or fungicides. All the derivatives 4­7 proved to be active (from low micromolar to high nanomolar range activity) towards insect trehalases, while no activity was observed against α-amylase. In particular, the natural compound uniflorine A and its 7-deoxy analogue were found to selectively inhibit insect trehalases, as they are inactive towards the mammalian enzyme. The effect of compound 6 was also analyzed in preliminary in vivo experiments. These new findings allow the identification of natural uniflorine A and its 7-deoxy analogue as the most promising inhibitors among a series of pyrrolizidine derivatives for future development in the agrochemical field, and the investigation also outlined the importance of the stereochemistry at C-6 of pyrrolizidine nucleus to confer such enzyme specificity.


Asunto(s)
Inhibidores Enzimáticos/química , Indolizinas/química , Proteínas de Insectos/antagonistas & inhibidores , Insecticidas/química , Alcaloides de Pirrolicidina/química , Trehalasa/antagonistas & inhibidores , Animales , Chironomidae/química , Chironomidae/efectos de los fármacos , Chironomidae/enzimología , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Indolizinas/síntesis química , Indolizinas/farmacología , Proteínas de Insectos/química , Insecticidas/síntesis química , Insecticidas/farmacología , Cinética , Larva/química , Larva/efectos de los fármacos , Larva/enzimología , Alcaloides de Pirrolicidina/síntesis química , Alcaloides de Pirrolicidina/farmacología , Especificidad de la Especie , Spodoptera/química , Spodoptera/efectos de los fármacos , Spodoptera/enzimología , Porcinos , Trehalasa/química , alfa-Amilasas/química
10.
Biochemistry ; 53(32): 5343-55, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25033330

RESUMEN

Circular dichroism (CD) spectra at variable temperatures have been recorded for human cytosolic sialidase NEU2 in buffered water solutions and in the presence of divalent cations. The results show the prevalence of ß-strands together with a considerable amount of α-helical structure, while in the solid state, from both previous X-ray diffraction analysis and our CD data on film samples, the content of ß-strands is higher. In solution, a significant change in CD spectra occurs with an increase in temperature, related to a decrease in α-helix content and a slight increase in ß-strand content. In the same range of temperatures, the enzymatic activity decreases. Although the overall structure of the protein appears to be particularly stable, molecular dynamics simulations performed at various temperatures evidence local conformational changes possibly relevant for explaining the relative lability of enzymatic activity.


Asunto(s)
Neuraminidasa/metabolismo , Dicroismo Circular , Simulación por Computador , Cristalización , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Neuraminidasa/química , Neuraminidasa/genética , Conformación Proteica , Espectrofotometría Infrarroja
11.
Invest New Drugs ; 32(6): 1123-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25134489

RESUMEN

The anticancer activity of a novel pure 1,4-Diaryl-2-azetidinone (1), endowed with a higher solubility than the well known Combretastatin A4, is tested in mice. We previously reported that Compound (1) showed specific antiproliferative activity against duodenal and colon cancer cells, inducing activation of AMP-activated protein kinase and apoptosis. Here we estimate that the maximum tolerated dose in a mouse model is 40 mg/kg; the drug is well tolerated both in single dose and in repeated administration schedules. The drug displays a significant antitumor activity and a tumor growth delay when administered at the MTD both in single and fractionated i.v. administration in a mouse xenograft model of colorectal cancer. Arrest of tumor growth and relapse after drug suspension are parallel to modification in glucose demand as shown by PET studies with [(18)F] FDG. These data strongly support Compound (1) as a promising molecule for in vivo treatment of colorectal cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos , Azetidinas , Neoplasias Colorrectales/tratamiento farmacológico , Glucosa/metabolismo , Guayacol/análogos & derivados , Animales , Antineoplásicos/sangre , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Azetidinas/sangre , Azetidinas/farmacocinética , Azetidinas/farmacología , Azetidinas/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Guayacol/sangre , Guayacol/farmacocinética , Guayacol/farmacología , Guayacol/uso terapéutico , Humanos , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Glycobiology ; 23(12): 1499-509, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24030392

RESUMEN

Human sialidase NEU4 long (N4L) is a membrane-associated enzyme that has been shown to be localized in the outer mitochondrial membrane. A role in different cellular processes has been suggested for this enzyme, such as apoptosis, neuronal differentiation and tumorigenesis. However, the molecular bases for these roles, not found in any of the other highly similar human sialidases, are not understood. We have found that a proline-rich sequence of 81 amino acids, unique to NEU4 sequence, contains potential Akt and Erk1 kinase motifs. Molecular modeling, based on the experimentally determined three-dimensional structure of cytosolic human NEU2, showed that the proline-rich sequence is accommodated in a loop, thus preserving the typical beta-barrel structure of sialidases. In order to investigate the role of this loop in neuronal differentiation, we obtained SK-N-BE neuroblastoma cells stably overexpressing either human wild-type N4L or a deletion mutant lacking the proline-rich loop. Our results demonstrate that the proline-rich region can also enhance cell proliferation and retinoic acid (RA)-induced neuronal differentiation and it is also involved in NEU4 interaction with Akt, as well as in substrate recognition, modifying directly or through the interaction with other protein(s) the enzyme specificity toward sialylated glycoprotein(s). On the whole, our results suggest that N4L could be a downstream component of the PI3K/Akt signaling pathway required for RA-induced differentiation of neuroblastoma SK-N-BE cells.


Asunto(s)
Diferenciación Celular , Neuraminidasa/química , Neuraminidasa/metabolismo , Neuroblastoma/patología , Prolina/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Humanos , Modelos Moleculares , Neuroblastoma/metabolismo , Tretinoina/farmacología , Células Tumorales Cultivadas
13.
Foods ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36765979

RESUMEN

Cinnamon bark is widely used for its organoleptic features in the food context and growing evidence supports its beneficial effect on human health. The market offers an increasingly wide range of food products and supplements enriched with cinnamon extracts which are eliciting beneficial and health-promoting properties. Specifically, the extract of Cinnamomum spp. is rich in antioxidant, anti-inflammatory and anticancer biomolecules. These include widely reported cinnamic acid and some phenolic compounds, such asproanthocyanidins A and B, and kaempferol. These molecules are sensitive to physical-chemical properties (such as pH and temperature) and biological agents that act during gastric digestion, which could impair molecules' bioactivity. Therefore, in this study, the cinnamon's antioxidant and anti-inflammatory bioactivity after simulated digestion was evaluated by analyzing the chemical profile of the pure extract and digested one, as well as the cellular effect in vitro models, such as Caco2 and intestinal barrier. The results showed that the digestive process reduces the total content of polyphenols, especially tannins, while preserving other bioactive compounds such as cinnamic acid. At the functional level, the digested extract maintains an antioxidant and anti-inflammatory effect at the cellular level.

14.
Front Biosci (Landmark Ed) ; 28(8): 176, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37664943

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease that causes progressive joint damage. The Janus kinase (JAK) inhibitors (JAK-I) represent a new therapeutic option for RA patients, blocking the intracellular JAK-STAT pathway. Today, no studies have been conducted to determine whether new biomarkers could better reflect disease activity in patients treated with JAK-I than traditional disease activity indicators. Thus, the aim of our study was to determine additional disease activity biomarkers in RA patients receiving selective JAK-1 inhibitors. METHODS: we enrolled 57 patients with RA: 34 patients were treated with Upadacitinib (UPA) and 23 patients with Filgotinib (FIL). All patients were evaluated for clinimetry with DAS28 and Crohn's Disease Activity Index (CDAI), number of tender and swollen joints, Visual Analogic Scale (VAS), Physician Global Assessment (PhGA), and Health Assessment Questionnaire (HAQ), at baseline and at the 12th week of treatment. Lymphocyte subpopulations, complete blood count, erythrocyte sedimentation rate (ESR), C-Reactive Protein (CRP), anti-cyclic citrullinated peptide antibodies (APCA), rheumatoid factor (RF) IgM, interleukin 6 (IL-6), circulating calprotectin (cCLP), tumor necrosis factor α (TNFα), soluble urokinase Plasminogen Activator Receptor (suPAR), complement functional activity were measured at baseline and after the 12th week of treatment. RESULTS: in both groups of patients, we documented a significant reduction in the clinimetric parameters DAS28, CDAI, number of tender joints, number of swollen joints, VAS, PhGA, and HAQ. Moreover, significant differences were reported for laboratory parameters of ESR, CRP, IL-6, suPAR, cCLP, and PLT/L ratio in both groups. However, no difference was demonstrated between the two groups for changes in renal, hepatic, and lipid parameters. CONCLUSIONS: the suPAR and cCLP levels may lead towards a different therapeutic choice between UPA and FIL, with the expression of two different RA pathophenotypes directing FIL towards a lymphocyte-poor form and UPA towards a myeloid form of RA.


Asunto(s)
Artritis Reumatoide , Quinasas Janus , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Humanos , Artritis Reumatoide/tratamiento farmacológico , Biomarcadores , Proteína C-Reactiva , Interleucina-6 , Quinasas Janus/antagonistas & inhibidores , Transducción de Señal , Factores de Transcripción STAT
15.
iScience ; 26(7): 107118, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37361873

RESUMEN

Coronaviruses encode a variable number of accessory proteins that are involved in host-virus interaction, suppression of immune responses, or immune evasion. SARS-CoV-2 encodes at least twelve accessory proteins, whose roles during infection have been studied. Nevertheless, the role of the ORF3c accessory protein, an alternative open reading frame of ORF3a, has remained elusive. Herein, we show that the ORF3c protein has a mitochondrial localization and alters mitochondrial metabolism, inducing a shift from glucose to fatty acids oxidation and enhanced oxidative phosphorylation. These effects result in increased ROS production and block of the autophagic flux. In particular, ORF3c affects lysosomal acidification, blocking the normal autophagic degradation process and leading to autolysosome accumulation. We also observed different effect on autophagy for SARS-CoV-2 and batCoV RaTG13 ORF3c proteins; the 36R and 40K sites are necessary and sufficient to determine these effects.

16.
Proteins ; 80(4): 1123-32, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22228546

RESUMEN

Sialidases or neuramidases are glycoside hydrolases removing terminal sialic acid residues from sialo-glycoproteins and sialo-glycolipids. Viral neuraminidases (NAs) have been extensively characterized and represent an excellent target for antiviral therapy through the synthesis of a series of competitive inhibitors that block the release of newly formed viral particles from infected cells. The human cytosolic sialidase NEU2 is the only mammalian enzyme structurally characterized and represents a valuable model to study the specificity of novel NA inhibitory drugs. Moreover, the availability of NEU2 3D structure represents a pivotal step toward the characterization of the molecular basis of natural substrates recognition by the enzyme. In this perspective, we have carried out a study of molecular docking of NEU2 active site using natural substrates of increasing complexity. Moreover, selective mutations of the residues putatively involved into substrate(s) interaction/recognition have been performed, and the resulting mutant enzymes have been preliminary tested for their catalytic activity and substrate specificity. We found that Q270 is involved in the binding of the disaccharide α(2,3) sialyl-galactose, whereas K45 and Q112 bind the distal glucose of the trisaccharide α(2,3) sialyl-lactose, corresponding to the oligosaccharide moiety of GM3 ganglioside. In addition, E218, beside D46, is proved to be a key catalytic residue, being, together with Y334, the second member of the nucleophile pair required for the catalysis. Overall, our results point out the existence of a dynamic network of interactions that are possibly involved in the recognition of the glycans bearing sialic acid.


Asunto(s)
Citosol/química , Neuraminidasa/química , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Activación Enzimática , Pruebas de Enzimas , Escherichia coli/química , Escherichia coli/genética , Galactosa/análogos & derivados , Galactosa/química , Humanos , Himecromona/análogos & derivados , Himecromona/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Lactosa/análogos & derivados , Lactosa/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Neuraminidasa/genética , Unión Proteica , Ácidos Siálicos/química , Especificidad por Sustrato
17.
Arch Insect Biochem Physiol ; 81(2): 77-89, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851493

RESUMEN

Trehalase is involved in the control of trehalose concentration, the main blood sugar in insects. Here, we describe the molecular cloning of the cDNA encoding for the soluble form of the trehalase from the midge larvae of Chironomus riparius, a well-known bioindicator of the quality of freshwater environments. Molecular cloning was achieved through multiple alignment of Diptera trehalase sequences, allowing the synthesis of internal homology-based primers; the complete open reading frame(ORF) was subsequently obtained through RACE-PCR(where RACE is rapid amplification of cDNA ends). The cDNA contained the 5' untranslated region (UTR), the 3' UTR including a poly(A) tail and the ORF of 1,725 bp consisting of 574 amino acid residues with a predicted molecular mass of 65,778 Da. Recombinant trehalase was successfully expressed in Escherichia coli as a His-tagged protein and purified on Ni-NTA affinity chromatography. Primary structure analysis showed a series of characteristic features shared by all insect trehalases, while three-dimensional structure prediction yielded the typical glucosidase fold, the two key residues involved in the catalytic mechanism being conserved. Production of recombinant insect trehalases opens the way to structural characterizations of the catalytic site, which might represent, among others, an element for reconsidering the enzyme as a target in pest insects' control.


Asunto(s)
Chironomidae/enzimología , Chironomidae/genética , Regulación Enzimológica de la Expresión Génica , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Chironomidae/química , Clonación Molecular , Escherichia coli/genética , Larva/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
18.
Foods ; 11(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37430951

RESUMEN

Cinnamon polyphenols are known as health-promoting agents. However, their positive impact depends on the extraction method and their bioaccessibility after digestion. In this work, cinnamon bark polyphenols were extracted in hot water and subjected to an in vitro enzymatic digestion. After a preliminary characterization of total polyphenols and flavonoids (respectively 520.05 ± 17.43 µgGAeq/mg and 294.77 ± 19.83 µgCATeq/mg powder extract), the extract antimicrobial activity was evidenced only against Staphylococcus aureus and Bacillus subtilis displaying a minimum inhibition growth concentration value of 2 and 1.3 mg/mL, respectively, although it was lost after in vitro extract digestion. The prebiotic potential was evaluated on probiotic Lactobacillus and Bifidobacterium strains highlighting a high growth on the in vitro digested cinnamon bark extract (up to 4 × 108 CFU/mL). Thus, the produced SCFAs and other secondary metabolites were extracted from the broth cultures and determined via GC-MSD analyses. The viability of healthy and tumor colorectal cell lines (CCD841 and SW480) was assayed after the exposition at two different concentrations (23 and 46 µgGAeq/mL) of the cinnamon extract, its digested, and the secondary metabolites produced in presence of cinnamon extract or its digested, showing positive protective effects against a tumorigenic condition.

19.
Front Nutr ; 9: 901944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938110

RESUMEN

The food waste generated by small and medium agro-industrial enterprises requires appropriate management and valorization in order to decrease environmental problems and recover high-value products, respectively. In this study, the Camelina sativa seed by-product was used as a source of glucosinolates. To begin, the chemical profile of the extract obtained using an international organization for standardization (ISO) procedure was determined by UPLC-HRMS/MS analysis. In addition, an extraction method based on ultrasound-assisted extraction was developed as an alternative and green method to recover glucosinolates. Main parameters that affect extraction efficiency were optimized using a response surface design. Under optimized conditions, the extract showed an improvement in extraction yield with a reduction in organic solvent amount compared to those obtained using the ISO procedure. Finally, the extract obtained with the ultrasound-assisted method was purified, tested on human colorectal cancer cell lines, and showed promising results.

20.
J Pers Med ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36556207

RESUMEN

BACKGROUND: In recent years, the involvement of the soluble urokinase Plasminogen Activator Receptor (suPAR) in the pathophysiological modulation of Rheumatoid Arthritis (RA) has been documented, resulting in the activation of several intracellular inflammatory pathways. METHODS: We investigated the correlation of urokinase Plasminogen Activator (uPA)/urokinase Plasminogen Activator Receptor (uPAR) expression and suPAR with inflammation and joint damage in RA, evaluating their potential role in a precision medicine context. RESULTS: Currently, suPAR has been shown to be a potential biomarker for the monitoring of Systemic Chronic Inflammation (SCI) and COVID-19. However, the effects due to suPAR interaction in immune cells are also involved in both RA onset and progression. To date, the literature data on suPAR in RA endorse its potential application as a biomarker of inflammation and subsequent joint damage. CONCLUSION: Available evidence about suPAR utility in the RA field is promising, and future research should further investigate its use in clinical practice, resulting in a big step forward for precision medicine. As it is elevated in different types of inflammation, suPAR could potentially work as an adjunctive tool for the screening of RA patients. In addition, a suPAR system has been shown to be involved in RA pathogenesis, so new data about the therapeutic response to Jak inhibitors can represent a possible way to develop further studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA