Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 15(1): 4729, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830897

RESUMEN

Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Cohesinas , Segregación Cromosómica , Mutación , Cromátides/metabolismo , Cromátides/genética , Evolución Molecular , Meiosis/genética
2.
Nature ; 441(7089): 53-61, 2006 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-16541024

RESUMEN

Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesin's Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.


Asunto(s)
Centrómero/metabolismo , Cromátides/metabolismo , Emparejamiento Cromosómico , Meiosis , Fosfoproteínas Fosfatasas/metabolismo , Saccharomyces cerevisiae/citología , Schizosaccharomyces/citología , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , Humanos , Ratones , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 2 , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Cohesinas
3.
Curr Biol ; 14(7): 560-72, 2004 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-15062096

RESUMEN

BACKGROUND: The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. RESULTS: A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. CONCLUSIONS: The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica/fisiología , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Centrómero/fisiología , Proteínas Cromosómicas no Histona , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Proteínas Fúngicas , Eliminación de Gen , Cinetocoros/metabolismo , Familia de Multigenes/genética , Proteínas Nucleares/genética , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Cohesinas
4.
Nat Struct Mol Biol ; 18(1): 6-13, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21186364

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a 22S ubiquitin ligase complex that initiates chromosome segregation and mitotic exit. We have used biochemical and electron microscopic analyses of Saccharomyces cerevisiae and human APC/C to address how the APC/C subunit Doc1 contributes to recruitment and processive ubiquitylation of APC/C substrates, and to understand how APC/C monomers interact to form a 36S dimeric form. We show that Doc1 interacts with Cdc27, Cdc16 and Apc1 and is located in the vicinity of the cullin-RING module Apc2-Apc11 in the inner cavity of the APC/C. Substrate proteins also bind in the inner cavity, in close proximity to Doc1 and the coactivator Cdh1, and induce conformational changes in Apc2-Apc11. Our results suggest that substrates are recruited to the APC/C by binding to a bipartite substrate receptor composed of a coactivator protein and Doc1.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Antígenos CD , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc10 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc6 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdh1 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/ultraestructura , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Cell ; 108(3): 317-29, 2002 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-11853667

RESUMEN

How sister kinetochores attach to microtubules from opposite spindle poles during mitosis (bi-orientation) remains poorly understood. In yeast, the ortholog of the Aurora B-INCENP protein kinase complex (Ipl1-Sli15) may have a role in this crucial process, because it is necessary to prevent attachment of sister kinetochores to microtubules from the same spindle pole. We investigated IPL1 function in cells that cannot replicate their chromosomes but nevertheless duplicate their spindle pole bodies (SPBs). Kinetochores detach from old SPBs and reattach to old and new SPBs with equal frequency in IPL1+ cells, but remain attached to old SPBs in ipl1 mutants. This raises the possibility that Ipl1-Sli15 facilitates bi-orientation by promoting turnover of kinetochore-SPB connections until traction of sister kinetochores toward opposite spindle poles creates tension in the surrounding chromatin.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Cromosomas Fúngicos/fisiología , Mitosis/fisiología , Proteínas Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Huso Acromático/fisiología , Aurora Quinasas , Cromosomas Fúngicos/ultraestructura , Replicación del ADN , ADN de Hongos/fisiología , Péptidos y Proteínas de Señalización Intracelular , Cinetocoros/fisiología , Cinetocoros/ultraestructura , Mutación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/citología , Huso Acromático/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA