RESUMEN
The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.
Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primates/genética , Terapia Genética , MutaciónRESUMEN
Heterozygous mutations in the X-linked MECP2 gene cause the neurological disorder Rett syndrome. The methyl-CpG-binding protein 2 (MeCP2) protein is an epigenetic reader whose binding to chromatin primarily depends on 5-methylcytosine. Functionally, MeCP2 has been implicated in several cellular processes on the basis of its reported interaction with more than 40 binding partners, including transcriptional co-repressors (for example, the NCoR/SMRT complex), transcriptional activators, RNA, chromatin remodellers, microRNA-processing proteins and splicing factors. Accordingly, MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential in mature neurons. At odds with the concept of broad functionality, missense mutations that cause Rett syndrome are concentrated in two discrete clusters coinciding with interaction sites for partner macromolecules: the methyl-CpG binding domain and the NCoR/SMRT interaction domain. Here we test the hypothesis that the single dominant function of MeCP2 is to physically connect DNA with the NCoR/SMRT complex, by removing almost all amino-acid sequences except the methyl-CpG binding and NCoR/SMRT interaction domains. We find that mice expressing truncated MeCP2 lacking both the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for over one year with only mild symptoms. This minimal protein is able to prevent or reverse neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid Rett syndrome-like defects and may therefore have therapeutic utility.
Asunto(s)
Prueba de Complementación Genética , Terapia Genética/métodos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/terapia , Eliminación de Secuencia , Células 3T3 , Animales , Encéfalo/metabolismo , ADN/metabolismo , Células HeLa , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Mutación Missense , Fenotipo , Dominios Proteicos/genética , Estabilidad Proteica , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología , Transducción GenéticaRESUMEN
Piezo1 is a mechanosensitive ion channel that facilitates the translation of extracellular mechanical cues to intracellular molecular signaling cascades through a process termed, mechanotransduction. In the central nervous system (CNS), mechanically gated ion channels are important regulators of neurodevelopmental processes such as axon guidance, neural stem cell differentiation, and myelination of axons by oligodendrocytes. Here, we present evidence that pharmacologically mediated overactivation of Piezo1 channels negatively regulates CNS myelination. Moreover, we found that the peptide GsMTx4, an antagonist of mechanosensitive cation channels such as Piezo1, is neuroprotective and prevents chemically induced demyelination. In contrast, the positive modulator of Piezo1 channel opening, Yoda-1, induces demyelination and neuronal damage. Using an ex vivo murine-derived organotypic cerebellar slice culture model, we demonstrate that GsMTx4 attenuates demyelination induced by the cytotoxic lipid, psychosine. Importantly, we confirmed the potential therapeutic effects of GsMTx4 peptide in vivo by co-administering it with lysophosphatidylcholine (LPC), via stereotactic injection, into the cerebral cortex of adult mice. GsMTx4 prevented both demyelination and neuronal damage usually caused by the intracortical injection of LPC in vivo; a well-characterized model of focal demyelination. GsMTx4 also attenuated both LPC-induced astrocyte toxicity and microglial reactivity within the lesion core. Overall, our data suggest that pharmacological activation of Piezo1 channels induces demyelination and that inhibition of mechanosensitive channels, using GsMTx4, may alleviate the secondary progressive neurodegeneration often present in the latter stages of demyelinating diseases.
Asunto(s)
Astrocitos/efectos de los fármacos , Enfermedades Desmielinizantes/tratamiento farmacológico , Canales Iónicos/efectos de los fármacos , Péptidos/farmacología , Animales , Astrocitos/metabolismo , Diferenciación Celular/fisiología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacosRESUMEN
We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 µm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.
Asunto(s)
Dispositivos Ópticos , Imagen Óptica/métodos , Animales , Encéfalo/citología , Ratones , Imagen Óptica/instrumentaciónRESUMEN
Typical Rett syndrome (RTT) is a pediatric disorder caused by loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. The demonstrated reversibility of RTT-like phenotypes in mice suggests that MECP2 gene replacement is a potential therapeutic option in patients. We report improvements in survival and phenotypic severity in Mecp2-null male mice after neonatal intracranial delivery of a single-stranded (ss) AAV9/chicken ß-actin (CBA)-MECP2 vector. Median survival was 16.6 weeks for MECP2-treated versus 9.3 weeks for green fluorescent protein (GFP)-treated mice. ssAAV9/CBA-MECP2-treated mice also showed significant improvement in the phenotype severity score, in locomotor function, and in exploratory activity, as well as a normalization of neuronal nuclear volume in transduced cells. Wild-type (WT) mice receiving neonatal injections of the same ssAAV9/CBA-MECP2 vector did not show any significant deficits, suggesting a tolerance for modest MeCP2 overexpression. To test a MECP2 gene replacement approach in a manner more relevant for human translation, a self-complementary (sc) adeno-associated virus (AAV) vector designed to drive MeCP2 expression from a fragment of the Mecp2 promoter was injected intravenously (IV) into juvenile (4-5 weeks old) Mecp2-null mice. While the brain transduction efficiency in juvenile mice was low (~2-4% of neurons), modest improvements in survival were still observed. These results support the concept of MECP2 gene therapy for RTT.
Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Ratones Noqueados/fisiología , Síndrome de Rett/terapia , Tasa de Supervivencia , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Masculino , Ratones , Ratones Noqueados/genética , Fenotipo , Síndrome de Rett/genéticaRESUMEN
Mutations in the X-linked gene MECP2 (methyl CpG-binding protein 2) are the primary cause of the neurodevelopmental disorder RTT (Rett syndrome), and are also implicated in other neurological conditions. The expression product of this gene, MeCP2, is a widely expressed nuclear protein, especially abundant in mature neurons of the CNS (central nervous system). The major recognized consequences of MECP2 mutation occur in the CNS, but there is growing awareness of peripheral effects contributing to the full RTT phenotype. MeCP2 is classically considered to act as a DNA methylation-dependent transcriptional repressor, but may have additional roles in regulating gene expression and chromatin structure. Knocking out Mecp2 function in mice recapitulates many of the overt neurological features seen in RTT patients, and the characteristic postnatally delayed onset of symptoms is accompanied by aberrant neuronal morphology and deficits in synaptic physiology. Evidence that reactivation of endogenous Mecp2 in mutant mice, even at adult stages, can reverse aspects of RTT-like pathology and result in apparently functionally mature neurons has provided renewed hope for patients, but has also provoked discussion about traditional boundaries between neurodevelopmental disorders and those involving dysfunction at later stages. In the present paper we review the neurobiology of MeCP2 and consider the various genetic (including gene therapy), pharmacological and environmental interventions that have been, and could be, developed to attempt phenotypic rescue in RTT. Such approaches are already providing valuable insights into the potential tractability of RTT and related conditions, and are useful pointers for the development of future therapeutic strategies.
Asunto(s)
Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Animales , Terapia Genética , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Síndrome de Rett/terapiaRESUMEN
MECP2 loss-of-function mutations cause Rett syndrome, a neurodevelopmental disorder resulting from a disrupted brain transcriptome. How these transcriptional defects are decoded into a disease proteome remains unknown. We studied the proteome of Rett cerebrospinal fluid (CSF) to identify consensus Rett proteome and ontologies shared across three species. Rett CSF proteomes enriched proteins annotated to HDL lipoproteins, complement, mitochondria, citrate/pyruvate metabolism, synapse compartments, and the neurosecretory protein VGF. We used shared Rett ontologies to select analytes for orthogonal quantification and functional validation. VGF and ontologically selected CSF proteins had genotypic discriminatory capacity as determined by receiver operating characteristic analysis in Mecp2 -/y and Mecp2 -/+ . Differentially expressed CSF proteins distinguished Rett from a related neurodevelopmental disorder, CDKL5 deficiency disorder. We propose that Mecp2 mutant CSF proteomes and ontologies inform putative mechanisms and biomarkers of disease. We suggest that Rett syndrome results from synapse and metabolism dysfunction.
RESUMEN
Rett syndrome (RTT) is a neurological disorder characterized by motor and cognitive impairment, autonomic dysfunction and a loss of purposeful hand skills. In the majority of cases, typical RTT is caused by de novo mutations in the X-linked gene, MECP2. Alterations in the structure and function of neurons within the central nervous system of RTT patients and Mecp2-null mouse models are well established. In contrast, few studies have investigated the effects of MeCP2-deficiency on peripheral nerves. In this study, we conducted detailed morphometric as well as functional analysis of the sciatic nerves of symptomatic adult female Mecp2+/- mice. We observed a significant reduction in the mean diameter of myelinated nerve fibers in Mecp2+/- mice. In myelinated fibers, mitochondrial densities per unit area of axoplasm were significantly altered in Mecp2+/- mice. However, conduction properties of the sciatic nerve of Mecp2 knockout mice were not different from control. These subtle changes in myelinated peripheral nerve fibers in heterozygous Mecp2 knockout mice could potentially explain some RTT phenotypes.
Asunto(s)
Axones/patología , Fibras Nerviosas Mielínicas/patología , Síndrome de Rett/patología , Nervio Ciático/patología , Potenciales de Acción/genética , Animales , Axones/ultraestructura , Biofisica , Modelos Animales de Enfermedad , Estimulación Eléctrica , Femenino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Mitocondrias/patología , Mitocondrias/ultraestructura , Conducción Nerviosa/genética , Síndrome de Rett/genéticaRESUMEN
Intravenous administration of adeno-associated virus serotype 9 (AAV9)/hMECP2 has been shown to extend the lifespan of Mecp2-/y mice, but this delivery route induces liver toxicity in wild-type (WT) mice. To reduce peripheral transgene expression, we explored the safety and efficacy of AAV9/hMECP2 injected into the cisterna magna (ICM). AAV9/hMECP2 (1 × 1012 viral genomes [vg]; ICM) extended Mecp2-/y survival but aggravated hindlimb clasping and abnormal gait phenotypes. In WT mice, 1 × 1012 vg of AAV9/hMECP2 induced clasping and abnormal gait. A lower dose mitigated these adverse phenotypes but failed to extend survival of Mecp2-/y mice. Thus, ICM delivery of this vector is impractical as a treatment for Rett syndrome (RTT). To improve the safety of MeCP2 gene therapy, the gene expression cassette was modified to include more endogenous regulatory elements believed to modulate MeCP2 expression in vivo. In Mecp2-/y mice, ICM injection of the modified vector extended lifespan and was well tolerated by the liver but did not rescue RTT behavioral phenotypes. In WT mice, these same doses of the modified vector had no adverse effects on survival or neurological phenotypes. In summary, we identified limitations of the original vector and demonstrated that an improved vector design extends Mecp2-/y survival, without apparent toxicity.
RESUMEN
Rett syndrome (RTT), caused by loss-of-function mutations in the MECP2 gene, is a neurological disorder characterized by severe impairment of motor and cognitive functions. The aim of this study was to investigate the impact of vector design, dosage, and delivery route on the efficacy and safety of gene augmentation therapy in mouse models of RTT. Our results show that AAV-mediated delivery of MECP2 to Mecp2 null mice by systemic administration, and utilizing a minimal endogenous promoter, was associated with a narrow therapeutic window and resulted in liver toxicity at higher doses. Lower doses of this vector significantly extended the survival of mice lacking MeCP2 or expressing a mutant T158M allele but had no impact on RTT-like neurological phenotypes. Modifying vector design by incorporating an extended Mecp2 promoter and additional regulatory 3' UTR elements significantly reduced hepatic toxicity after systemic administration. Moreover, direct cerebroventricular injection of this vector into neonatal Mecp2-null mice resulted in high brain transduction efficiency, increased survival and body weight, and an amelioration of RTT-like phenotypes. Our results show that controlling levels of MeCP2 expression in the liver is achievable through modification of the expression cassette. However, it also highlights the importance of achieving high brain transduction to impact the RTT-like phenotypes.
RESUMEN
Rett syndrome (RTT) is a genetic disorder characterized by a range of features including cognitive impairment, gait abnormalities and a reduction in purposeful hand skills. Mice harbouring knockout mutations in the Mecp2 gene display many RTT-like characteristics and are central to efforts to find novel therapies for the disorder. As hand stereotypies and gait abnormalities constitute major diagnostic criteria in RTT, it is clear that motor and gait-related phenotypes will be of importance in assessing preclinical therapeutic outcomes. We therefore aimed to assess gait properties over the prodromal phase in a functional knockout mouse model of RTT. In male Mecp2 knockout mice, we observed alterations in stride, coordination and balance parameters at 4 weeks of age, before the onset of other overt phenotypic changes as revealed by observational scoring. These data suggest that gait measures may be used as a robust and early marker of MeCP2-dysfunction in future preclinical therapeutic studies.