Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991041

RESUMEN

Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with higher risk of dementia, and, consequently, be not rarely misdiagnosed. In this review, we summarize the state-of-the-art on LBD-AD by discussing the synergistic effects between AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment in LBD-AD and their possible diagnostic and prognostic value. AD pathology can be suspected in vivo by means of CSF, MRI and PET markers, whereas α-synuclein seed amplification assays (SAAs) represent to date the most promising technique to identify Lewy pathology in different biological tissues. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity like in pure AD. The implementation of blood-based biomarkers of AD might allow the fast screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account for the differential diagnosis of dementia syndromes, for the prognostic evaluation on an individual level and for guiding symptomatic and disease-modifying therapies.

2.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37557955

RESUMEN

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Encéfalo , Biomarcadores , Neuronas , Medicina de Precisión , Péptidos beta-Amiloides
3.
Clin Chem Lab Med ; 62(2): 332-340, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37656487

RESUMEN

OBJECTIVES: Decreased cerebrospinal fluid (CSF) amyloid beta 42/40 ratio (Aß42/40) is one of the core Alzheimer's disease (AD) biomarkers. Measurement of Aß42/40 in plasma has also been proposed as a surrogate marker for amyloidosis, however the validity and the diagnostic performance of this biomarker is still uncertain. Here we evaluated two immunoassays targeting distinct regions of the amyloid peptides by (a) performing a method comparison in both CSF and plasma, and (b) assessing the diagnostic performance across the AD continuum. METHODS: We used N4PE and N3PA Simoa® assays to measure Aß42/40 in CSF and plasma of 134 patients: preclinical AD (pre-AD, n=19), mild cognitive impairment due to AD (MCI-AD, n=41), AD at the dementia stage (AD-dem, n=35), and a control group (CTRL, n=39). The N4PE includes a detector antibody targeting the amyloid N-terminus, while the N3PA uses a detector targeting amyloid mid-region. RESULTS: Method comparison of N4PE and N3PA assays revealed discrepancies in assessment of plasma Aß42/Aß40. While the diagnostic performance of the two assays did not significantly differ in CSF, in plasma, N4PE assay provided better accuracy for AD discrimination than N3PA assay (AUC AD-dem vs. CTRL 0.77 N4PE, 0.68 N3PA). CONCLUSIONS: While both Aß42/40 assays allowed for an effective discrimination between CTRL and different AD stages, the assay targeting amyloid N-terminal region provided the best diagnostic performance in plasma. Differences observed in technical and diagnostic performance of the two assays may depend on matrix-specific amyloid processing, suggesting that further studies should be carried to standardize amyloid ratio measurement in plasma.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Fragmentos de Péptidos , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/líquido cefalorraquídeo , Biomarcadores , Proteínas tau/líquido cefalorraquídeo
4.
Alzheimers Dement ; 20(4): 2444-2452, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38323747

RESUMEN

INTRODUCTION: Lewy body disease, a frequently observed co-pathology in Alzheimer's disease (AD), can be identified antemortem in cerebrospinal fluid (CSF) by α-synuclein seed amplification assay (αS-SAA). The prevalence and clinical impact of CSF αS-SAA positivity in AD are still unknown. METHODS: αS-SAA was performed on CSF samples from 240 AD patients (preclinical, prodromal, and dementia stages), 85 controls, 84 patients with Parkinson's disease (PD), and 21 patients with PD with dementia or dementia with Lewy bodies. In AD patients, associations between αS-SAA positivity and cognitive changes were also evaluated. RESULTS: In agreement with available neuropathological studies, αS-SAA positivity was observed in 30% of AD patients (vs 9% in controls), and was associated with cognitive decline, visuospatial impairment, and behavioral disturbances. DISCUSSION: αS-SAA positivity in AD patients reflects the prevalence observed in neuropathological series and is associated with a worse clinical outcome. These data confirm the validity of CSF αS-SAA positivity as biomarker of synucleinopathy.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína/líquido cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Enfermedad de Parkinson/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo
5.
Alzheimers Dement ; 20(4): 2453-2468, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38323780

RESUMEN

INTRODUCTION: For routine clinical implementation of Alzheimer's disease (AD) plasma biomarkers, fully automated random-access platforms are crucial to ensure reproducible measurements. We aimed to perform an analytical validation and to establish cutoffs for AD plasma biomarkers measured with Lumipulse. METHODS: Two cohorts were included. UNIPG: n = 450 paired cerebrospinal fluid (CSF)/plasma samples from subjects along the AD-continuum, subjects affected by other neurodegenerative diseases, and controls with known CSF profile; AMS: n = 40 plasma samples from AD and n = 40 controls. Plasma amyloid ß (Aß)42, Aß40, and p-tau181 were measured with Lumipulse. We evaluated analytical and diagnostic performance. RESULTS: Lumipulse assays showed high analytical performance. Plasma p-tau181 levels accurately reflected CSF A+/T+ profile in AD-dementia and mild cognitive impairment (MCI)-AD, but not in asymptomatic-AD. Plasma and CSF Aß42/40 values were concordant across clinical AD stages. Cutoffs and probability-based models performed satisfactorily in both cohorts. DISCUSSION: The identified cutoffs and probability-based models represent a significant step toward plasma AD molecular diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquídeo
6.
Neurobiol Dis ; 189: 106356, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977432

RESUMEN

CSF-to-plasma transition will open new avenues for molecular phenotyping of Alzheimer's disease (AD). Here we evaluated a panel of AD biomarkers in matched CSF and plasma samples across the AD continuum, from preclinical AD to dementia. The aims were to: 1) compare diagnostic performance of the two biofluids, 2) evaluate trajectories of the biomarkers along AD progression. We analyzed CSF and plasma Aß42/40, p-tau181, p-tau231, t-tau, NF-L, GFAP, UCHL-1 and CSF SNAP-25 in a cohort (n = 173) of preclinical AD, MCI-AD, AD dementia, frontotemporal dementia patients, and controls. We found a significant correlation between CSF and plasma levels of Aß42/40, p-tau181, p-tau231, NF-L, and GFAP, while no CSF-plasma correlation was observed for t-tau and UCHL-1. Next to the core CSF biomarkers (Aß42/40, p-tau181, t-tau), those providing the best discrimination between controls and preclinical AD were CSF p-tau231 and SNAP-25 and plasma Aß42/40, p-tau231, and GFAP. Among plasma biomarkers, we found Aß42/Aß40, GFAP, and p-tau231 to show the largest rate of change at the CSF biomarker-defined cut-offs for amyloidosis and tauopathy. Finally, we identified GFAP, NF-L, and p-tau181 as the biomarkers most significantly associated with disease progression in both CSF and plasma. We suggest that a well-standardized and validated panel of selected plasma markers can facilitate early AD diagnosis, even at the asymptomatic disease stage. We propose that both CSF and plasma measurement of NF-L, p-tau181, and GFAP may play a significant role in disease staging and monitoring.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo
7.
J Neurol Neurosurg Psychiatry ; 94(5): 389-395, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36653171

RESUMEN

Psychiatric symptoms frequently occur in multiple sclerosis (MS), presenting with a complex phenomenology that encompasses a large clinical spectrum from clear-cut psychiatric disorders up to isolated psychopathological manifestations. Despite their relevant impact on the overall disease burden, such clinical features are often misdiagnosed, receive suboptimal treatment and are not systematically evaluated in the quantification of disease activity. The development of psychiatric symptoms in MS underpins a complex pathogenesis involving both emotional reactions to a disabling disease and structural multifocal central nervous system damage. Here, we review MS psychopathological manifestations under a biological perspective, highlighting the pathogenic relevance of synaptic and neural network dysfunction. Evidence obtained from human and experimental disease models suggests that MS-related psychiatric phenomenology is part of a disconnection syndrome due to diffuse inflammatory and neurodegenerative brain damage.


Asunto(s)
Trastornos Mentales , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Inflamación/patología
8.
J Neurol Neurosurg Psychiatry ; 94(1): 83-86, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944974

RESUMEN

INTRODUCTION: ß-synuclein (ß-syn) is a presynaptic protein, whose cerebrospinal fluid (CSF) levels are increased in patients with Alzheimer's diseases (AD) showing mild cognitive impairment (MCI) and dementia (dem). Here, we aimed to investigate CSF ß-syn in subjects at different AD stages, including preclinical AD (pre-AD), and to compare its behaviour with another synaptic biomarker, α-synuclein (α-syn), and two biomarkers of neuro-axonal damage, namely neurofilament light chain protein (NfL) and total tau protein (t-tau). METHODS: We measured ß-syn, α-syn, t-tau and NfL in CSF of 75 patients with AD (pre-AD n=17, MCI-AD n=28, dem-AD n=30) and 35 controls (subjective memory complaints, SMC-Ctrl n=13, non-degenerative neurological disorders, Dis-Ctrl n=22). RESULTS: CSF ß-syn, α-syn, t-tau were significantly elevated in pre-AD patients compared with controls (p<0.0001, p=0.02 and p=0.0001, respectively), while NfL only increased in dem-AD (p=0.001). Pre-AD cases showed lower t-tau concentrations than MCI-AD (p=0.04) and dem-AD (p=0.01). CSF ß-syn had the best diagnostic performance for the discrimination of pre-AD subjects from all controls (area under the curve, AUC=0.97) and from SMC-Ctrl subjects (AUC=0.99). DISCUSSION: CSF ß-syn increases in the whole AD continuum since the preclinical stage and represents a promising biomarker of synaptic damage in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Sinucleína beta , Proteínas tau/líquido cefalorraquídeo , Disfunción Cognitiva/psicología , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo
9.
Mov Disord ; 38(4): 682-688, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36808643

RESUMEN

BACKGROUND: The alteration of leucine-rich repeat kinase 2 (LRRK2) kinase activity is thought to be involved in Parkinson's disease (PD) pathogenesis beyond familiar cases, and LRRK2 inhibitors are currently under investigation. Preliminary data suggest a relationship between LRRK2 alteration and cognitive impairment in PD. OBJECTIVE: To investigate cerebrospinal fluid (CSF) LRRK2 levels in PD and other parkinsonian disorders, also correlating them with cognitive impairment. METHODS: In this study, we retrospectively investigated by means of a novel highly sensitive immunoassay the levels of total and phosphorylated (pS1292) LRRK2 in CSF of cognitively unimpaired PD (n = 55), PD with mild cognitive impairment (n = 49), PD with dementia (n = 18), dementia with Lewy bodies (n = 12), atypical parkinsonian syndromes (n = 35), and neurological controls (n = 30). RESULTS: Total and pS1292 LRRK2 levels were significantly higher in PD with dementia with respect to PD with mild cognitive impairment and PD, and also showed a correlation with cognitive performances. CONCLUSIONS: The tested immunoassay may represent a reliable method for assessing CSF LRRK2 levels. The results appear to confirm an association of LRRK2 alteration with cognitive impairment in PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Demencia , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Demencia/etiología , Demencia/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/líquido cefalorraquídeo , Trastornos Parkinsonianos/líquido cefalorraquídeo , Trastornos Parkinsonianos/complicaciones , Estudios Retrospectivos
10.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024760

RESUMEN

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Biocatálisis , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Ratones Noqueados , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptófano/metabolismo
11.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203309

RESUMEN

Early diagnosis of multiple sclerosis (MS) relies on clinical evaluation, magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) analysis. Reliable biomarkers are needed to differentiate MS from other neurological conditions and to define the underlying pathogenesis. This study aimed to comprehensively profile immune activation biomarkers in the CSF of individuals with MS and explore distinct signatures between MS with and without oligoclonal bands (OCB). A total of 118 subjects, including relapsing-remitting MS with OCB (MS OCB+) (n = 58), without OCB (MS OCB-) (n = 24), and controls with other neurological diseases (OND) (n = 36), were included. CSF samples were analyzed by means of proximity extension assay (PEA) for quantifying 92 immune-related proteins. Neurofilament light chain (NfL), a marker of axonal damage, was also measured. Machine learning techniques were employed to identify biomarker panels differentiating MS with and without OCB from controls. Analyses were performed by splitting the cohort into a training and a validation set. CSF CD5 and IL-12B exhibited the highest discriminatory power in differentiating MS from controls. CSF MIP-1-alpha, CD5, CXCL10, CCL23 and CXCL9 were positively correlated with NfL. Multivariate models were developed to distinguish MS OCB+ and MS OCB- from controls. The model for MS OCB+ included IL-12B, CD5, CX3CL1, FGF-19, CST5, MCP-1 (91% sensitivity and 94% specificity in the training set, 81% sensitivity, and 94% specificity in the validation set). The model for MS OCB- included CX3CL1, CD5, NfL, CCL4 and OPG (87% sensitivity and 80% specificity in the training set, 56% sensitivity and 48% specificity in the validation set). Comprehensive immune profiling of CSF biomarkers in MS revealed distinct pathophysiological signatures associated with OCB status. The identified biomarker panels, enriched in T cell activation markers and immune mediators, hold promise for improved diagnostic accuracy and insights into MS pathogenesis.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Bandas Oligoclonales , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Axones , Bioensayo
12.
Mov Disord ; 37(4): 669-683, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122299

RESUMEN

The synuclein family includes three neuronal proteins, named α-synuclein, ß-synuclein, and γ-synuclein, that have peculiar structural features. α-synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of ß-synuclein and γ-synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α-synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to ß-synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ-synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α-synuclein and ß-synuclein in PD. We also discuss the role of α-synuclein and ß-synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease-modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Biomarcadores/líquido cefalorraquídeo , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Sinucleína beta , gamma-Sinucleína
13.
J Neuroinflammation ; 18(1): 259, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749743

RESUMEN

Several lines of evidence support a role of the immune system in headache pathogenesis, with particular regard to migraine. Firstly, alterations in cytokine profile and in lymphocyte subsets have been reported in headache patients. Secondly, several genetic and environmental pathogenic factors seem to be frequently shared by headache and immunological/autoimmune diseases. Accordingly, immunological alterations in primary headaches, in particular in migraine, have been suggested to predispose some patients to the development of immunological and autoimmune diseases. On the other hand, pathogenic mechanisms underlying autoimmune disorders, in some cases, seem to favour the onset of headache. Therefore, an association between headache and immunological/autoimmune disorders has been thoroughly investigated in the last years. The knowledge of this possible association may have relevant implications in the clinical practice when deciding diagnostic and therapeutic approaches. The present review summarizes findings to date regarding the plausible relationship between headache and immunological/autoimmune disorders, starting from a description of immunological alteration of primary headaches, and moving onward to the evidence supporting a potential link between headache and each specific autoimmune/immunological disease.


Asunto(s)
Enfermedades Autoinmunes , Cefalea , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/inmunología , Cefalea/epidemiología , Cefalea/etiología , Cefalea/inmunología , Humanos , Enfermedades del Sistema Inmune/complicaciones , Enfermedades del Sistema Inmune/inmunología
14.
Amino Acids ; 53(3): 435-449, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33616735

RESUMEN

Altered glutamatergic neurotransmission is thought to play a crucial role in the progression of Alzheimer's disease (AD). Accordingly, the identification of peculiar biochemical patterns reflecting AD-related synaptopathy in blood and cerebrospinal fluid (CSF) could have relevant diagnostic and prognostic implications. In this study, we measured by High-Performance Liquid Chromatography the amount of glutamate, glutamine and glycine in post-mortem brain samples of AD patients, as well as in CSF and blood serum of drug-free subjects encompassing the whole AD clinical spectrum (pre-clinical AD, n = 18, mild cognitive impairment-AD, n = 29, dementia AD, n = 30). Interestingly, we found that glutamate and glycine levels, as well as total tau protein content, were significantly reduced in the superior frontal gyrus of patients with AD, compared with non-demented controls. No significant change was also found in glutamate, glutamine and glycine CSF concentrations between AD patients and neurological controls. Remarkably, serum glutamate levels were significantly higher in patients affected by early AD phases compared to controls, and were negatively correlated with CSF total tau levels. Conversely, serum glutamine concentration was significantly increased in AD patients, with a negative correlation with MMSE performances. Finally, we reported a significant correlation between serum L-glutamate concentrations and CDR score in female but not in male cohort of AD subjects. Overall, our results suggest that serum glutamate and glutamine levels in AD patients could vary across disease stages, potentially reflecting the progressive alteration of glutamatergic signaling during neurodegenerative processes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Glicina/metabolismo , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Biomarcadores/análisis , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Femenino , Ácido Glutámico/análisis , Glutamina/análisis , Glicina/análisis , Humanos , Masculino , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología
15.
Eur J Neurol ; 28(4): 1299-1307, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33305459

RESUMEN

BACKGROUND AND PURPOSE: Tumefactive multiple sclerosis (TuMS) (i.e., MS onset presenting with tumefactive demyelinating lesions [TDLs]) is a diagnostic and therapeutic challenge. We performed a multicentre retrospective study to describe the clinical characteristics and the prognostic factors of TuMS. METHODS: One hundred two TuMS patients were included in this retrospective study. Demographic, clinical, magnetic resonance imaging (MRI), laboratory data and treatment choices were collected. RESULTS: TuMS was found to affect women more than men (female:male: 2.4), with a young adulthood onset (median age: 29.5 years, range: 11-68 years, interquartile range [IQR]: 38 years). At onset, 52% of TuMS patients presented with the involvement of more than one functional system and 24.5% of them with multiple TDLs. TDLs most frequently presented with an infiltrative MRI pattern (38.7%). Cerebrospinal fluid immunoglobulin G oligoclonal bands were often demonstrated (76.6%). In 25.3% of the cases, more than one acute-phase treatment was administered, and almost one-half of the patients (46.6%) were treated with high-efficacy treatments. After a median follow-up of 2.3 years (range: 0.1-10.7 years, IQR: 3.4 years), the median Expanded Disability Status Scale (EDSS) score was 1.5 (range: 0-7, IQR: 2). Independent risk factors for reaching an EDSS score ≥3 were a higher age at onset (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 1.03-1.14, p < 0.01), a higher number of TDLs (OR: 1.67, 95% CI: 1.02-2.74, p < 0.05) and the presence of infiltrative TDLs (OR: 3.34, 95% CI: 1.18-9.5, p < 0.001) at baseline. CONCLUSIONS: The management of TuMS might be challenging because of its peculiar characteristics. Large prospective studies could help to define the clinical characteristics and the best treatment algorithms for people with TuMS.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Bandas Oligoclonales , Estudios Prospectivos , Estudios Retrospectivos , Adulto Joven
16.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066951

RESUMEN

Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer's disease (AD) and Parkinson's disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Biomarcadores/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Humanos , Esclerosis Múltiple/fisiopatología , Degeneración Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología
17.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575917

RESUMEN

Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.


Asunto(s)
Susceptibilidad a Enfermedades , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Animales , Biomarcadores , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental , Humanos , Inflamación , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Esclerosis Múltiple/diagnóstico
18.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922780

RESUMEN

Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer's disease, fronto-temporal dementia, Parkinson's disease, Huntington's disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.


Asunto(s)
Enfermedades del Sistema Nervioso Central/complicaciones , Trastornos Psicóticos/diagnóstico , Diagnóstico Diferencial , Diagnóstico Precoz , Humanos , Trastornos Psicóticos/etiología , Trastornos Psicóticos/fisiopatología
19.
J Neurol Neurosurg Psychiatry ; 90(8): 870-881, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30967444

RESUMEN

In the management of neurological diseases, the identification and quantification of axonal damage could allow for the improvement of diagnostic accuracy and prognostic assessment. Neurofilament light chain (NfL) is a neuronal cytoplasmic protein highly expressed in large calibre myelinated axons. Its levels increase in cerebrospinal fluid (CSF) and blood proportionally to the degree of axonal damage in a variety of neurological disorders, including inflammatory, neurodegenerative, traumatic and cerebrovascular diseases. New immunoassays able to detect biomarkers at ultralow levels have allowed for the measurement of NfL in blood, thus making it possible to easily and repeatedly measure NfL for monitoring diseases' courses. Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and NfL is one of the most promising biomarkers to be used in clinical and research setting in the next future. Here we review the most important results on CSF and blood NfL and we discuss its potential applications and future directions.


Asunto(s)
Enfermedades del Sistema Nervioso/diagnóstico , Proteínas de Neurofilamentos/sangre , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Humanos , Enfermedades del Sistema Nervioso/sangre , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Pronóstico
20.
Neurobiol Dis ; 113: 97-108, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29325869

RESUMEN

During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Microglía/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Animales , GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico/antagonistas & inhibidores , Técnicas de Cultivo de Órganos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Azida Sódica/farmacología , Azida Sódica/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA