Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(21): 12407-12414, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152066

RESUMEN

The axial stiffness of DNA origami is determined as a function of key nanostructural characteristics. Different constructs of two-helix nanobeams with specified densities of nicks and Holliday junctions are synthesized and stretched by fluid flow. Implementing single particle tracking to extract force-displacement curves enables the measurement of DNA origami stiffness values at the enthalpic elasticity regime, i.e. for forces larger than 15 pN. Comparisons between ligated and nicked helices show that the latter exhibit nearly a two-fold decrease in axial stiffness. Numerical models that treat the DNA helices as elastic rods are used to evaluate the local loss of stiffness at the locations of nicks and Holliday junctions. It is shown that the models reproduce the experimental data accurately, indicating that both of these design characteristics yield a local stiffness two orders of magnitude smaller than the corresponding value of the intact double-helix. This local degradation in turn leads to a macroscopic loss of stiffness that is evaluated numerically for multi-helix DNA bundles.


Asunto(s)
ADN Cruciforme/química , ADN de Cadena Simple/química , ADN Viral/química , Nanoestructuras/química , Bacteriófago M13/química , Bacteriófago M13/genética , Fenómenos Biomecánicos , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Elasticidad , Polinucleótido 5'-Hidroxil-Quinasa/química , Termodinámica
2.
J Am Chem Soc ; 138(24): 7733-40, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27224641

RESUMEN

Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, here we design a family of hexagonal DNA-origami tiles using computer-aided design and demonstrate successful self-assembly of micrometer-scale 2D honeycomb lattices and tubes by controlling their geometric and mechanical properties including their interconnecting strands. Our results offer insight into programmed self-assembly of low-defect supra-molecular DNA-origami 2D lattices and tubes. In addition, we demonstrate that these DNA-origami hexagon tiles and honeycomb lattices are versatile platforms for assembling optical metamaterials via programmable spatial arrangement of gold nanoparticles (AuNPs) into cluster and superlattice geometries.


Asunto(s)
ADN/química , Ensayo de Materiales , Nanopartículas del Metal/química , Análisis por Conglomerados , Diseño Asistido por Computadora , Oro/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Teóricos , Nanoestructuras/química , Nanotecnología , Conformación de Ácido Nucleico , Programas Informáticos , Estrés Mecánico
3.
Sci Adv ; 9(41): eadi1453, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831768

RESUMEN

Extracting the relation between microstructural features and resulting material properties is essential for advancing our fundamental knowledge on the mechanics of cellular metamaterials and to enable the design of novel material systems. Here, we present a unified framework that not only allows the prediction of macroscopic properties but, more importantly, also reveals their connection to key morphological characteristics, as identified by the integration of machine-learning models and interpretability algorithms. We establish the complex manner in which strut orientation can be critical in determining effective stiffness for certain microstructures and highlight cellular metamaterials with counterintuitive material behavior. We further provide a refined version of Maxwell's criteria regarding the rigidity of frame structures and their connection to cellular metamaterials. By examining the shear moduli of these metamaterials, the mean cell compactness emerges as a key morphological feature. The generality of the proposed framework allows its extension to broader classes of architected materials as well as different properties of interest.

4.
Nat Phys ; 18(9): 1112-1121, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37220497

RESUMEN

Cell behaviour is affected by the physical forces and mechanical properties of the cells and of their microenvironment. The viscosity of extracellular fluid - a component of the cellular microenvironment - can vary by orders of magnitude, but its effect on cell behaviour remains largely unexplored. Using bio-compatible polymers to increase the viscosity of the culture medium, we characterize how viscosity affects cell behaviour. We find that multiple types of adherent cells respond in an unexpected but similar manner to elevated viscosity. In a highly viscous medium, cells double their spread area, exhibit increased focal adhesion formation and turnover, generate significantly greater traction forces, and migrate nearly two times faster. We observe that when cells are immersed in regular medium, these viscosity-dependent responses require an actively ruffling lamellipodium - a dynamic membrane structure at the front of the cell. We present evidence that cells utilize membrane ruffling to sense changes in extracellular fluid viscosity and to trigger adaptive responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA