Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38261629

RESUMEN

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

2.
J Biol Chem ; 299(6): 104786, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146968

RESUMEN

The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.


Asunto(s)
Proteínas de Ciclo Celular , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Expresión Génica , Células HEK293 , Mutación , Dominios Proteicos , Transporte de Proteínas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Respir Res ; 25(1): 106, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419014

RESUMEN

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Volumen Espiratorio Forzado/fisiología
4.
Am J Respir Crit Care Med ; 204(8): 967-976, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34319850

RESUMEN

Rationale: Chronic lung allograft dysfunction (CLAD) results in significant morbidity after lung transplantation. Potential CLAD occurs when lung function declines to 80-90% of baseline. Better noninvasive tools to prognosticate at potential CLAD are needed. Objectives: To determine whether parametric response mapping (PRM), a computed tomography (CT) voxel-wise methodology applied to high-resolution CT scans, can identify patients at risk of progression to CLAD or death. Methods: Radiographic features and PRM-based CT metrics quantifying functional small airway disease (PRMfSAD) and parenchymal disease (PRMPD) were studied at potential CLAD (n = 61). High PRMfSAD and high PRMPD were defined as ⩾30%. Restricted mean modeling was performed to compare CLAD-free survival among groups. Measurements and Main Results: PRM metrics identified the following three unique signatures: high PRMfSAD (11.5%), high PRMPD (41%), and neither (PRMNormal; 47.5%). Patients with high PRMfSAD or PRMPD had shorter CLAD-free median survival times (0.46 yr and 0.50 yr) compared with patients with predominantly PRMNormal (2.03 yr; P = 0.004 and P = 0.007 compared with PRMfSAD and PRMPD groups, respectively). In multivariate modeling adjusting for single- versus double-lung transplant, age at transplant, body mass index at potential CLAD, and time from transplant to CT scan, PRMfSAD ⩾30% or PRMPD ⩾30% continue to be statistically significant predictors of shorter CLAD-free survival. Air trapping by radiologist interpretation was common (66%), was similar across PRM groups, and was not predictive of CLAD-free survival. Ground-glass opacities by radiologist read occurred in 16% of cases and were associated with decreased CLAD-free survival (P < 0.001). Conclusions: PRM analysis offers valuable prognostic information at potential CLAD, identifying patients most at risk of developing CLAD or death.


Asunto(s)
Reglas de Decisión Clínica , Enfermedades Pulmonares/diagnóstico por imagen , Trasplante de Pulmón , Complicaciones Posoperatorias/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Enfermedad Crónica , Diagnóstico Precoz , Femenino , Humanos , Estimación de Kaplan-Meier , Enfermedades Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Análisis Multivariante , Complicaciones Posoperatorias/mortalidad , Pronóstico , Estudios Retrospectivos
5.
Am J Respir Crit Care Med ; 201(3): 294-302, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31657634

RESUMEN

Rationale: The decades-long progression of chronic obstructive pulmonary disease (COPD) renders identifying different trajectories of disease progression challenging.Objectives: To identify subtypes of patients with COPD with distinct longitudinal progression patterns using a novel machine-learning tool called "Subtype and Stage Inference" (SuStaIn) and to evaluate the utility of SuStaIn for patient stratification in COPD.Methods: We applied SuStaIn to cross-sectional computed tomography imaging markers in 3,698 Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-4 patients and 3,479 controls from the COPDGene (COPD Genetic Epidemiology) study to identify subtypes of patients with COPD. We confirmed the identified subtypes and progression patterns using ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) data. We assessed the utility of SuStaIn for patient stratification by comparing SuStaIn subtypes and stages at baseline with longitudinal follow-up data.Measurements and Main Results: We identified two trajectories of disease progression in COPD: a "Tissue→Airway" subtype (n = 2,354, 70.4%), in which small airway dysfunction and emphysema precede large airway wall abnormalities, and an "Airway→Tissue" subtype (n = 988, 29.6%), in which large airway wall abnormalities precede emphysema and small airway dysfunction. Subtypes were reproducible in ECLIPSE. Baseline stage in both subtypes correlated with future FEV1/FVC decline (r = -0.16 [P < 0.001] in the Tissue→Airway group; r = -0.14 [P = 0.011] in the Airway→Tissue group). SuStaIn placed 30% of smokers with normal lung function at elevated stages, suggesting imaging changes consistent with early COPD. Individuals with early changes were 2.5 times more likely to meet COPD diagnostic criteria at follow-up.Conclusions: We demonstrate two distinct patterns of disease progression in COPD using SuStaIn, likely representing different endotypes. One third of healthy smokers have detectable imaging changes, suggesting a new biomarker of "early COPD."


Asunto(s)
Progresión de la Enfermedad , Modelos Teóricos , Enfermedad Pulmonar Obstructiva Crónica/clasificación , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
J Appl Clin Med Phys ; 22(11): 80-89, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34697884

RESUMEN

PURPOSE: Recent advancements in functional lung imaging have been developed to improve clinicians' knowledge of patient pulmonary condition prior to treatment. Ultimately, it may be possible to employ these functional imaging modalities to tailor radiation treatment plans to optimize patient outcome and mitigate pulmonary complications. Parametric response mapping (PRM) is a computed tomography (CT)-based functional lung imaging method that utilizes a voxel-wise image analysis technique to classify lung abnormality phenotypes, and has previously been shown to be effective at assessing lung complication risk in diagnostic applications. The purpose of this work was to demonstrate the implementation of PRM guidance in radiotherapy treatment planning. METHODS AND MATERIALS: A retrospective study was performed with 18 lung cancer patients to test the incorporation of PRM into a radiotherapy planning workflow. Paired inspiration/expiration pretreatment CT scans were acquired and PRM analysis was utilized to classify each voxel as normal, parenchymal disease, small airway disease, and emphysema. Density maps were generated for each PRM classification to contour high density regions of pulmonary abnormalities. Conventional volumetric-modulated arc therapy and PRM-guided treatment plans were designed for each patient. RESULTS: PRM guidance was successfully implemented into the treatment planning process. The inclusion of PRM priorities resulted in statistically significant (p < 0.05) improvements to the V20Gy within the PRM avoidance contours. On average, reductions of 5.4% in the V20Gy(%) were found. The PRM-guided treatment plans did not significantly increase the dose to the organs at risk or result in insufficient planning target volume coverage, but did increase plan complexity. CONCLUSIONS: PRM guidance was successfully implemented into a treatment planning workflow and shown to be effective for dose redistribution within the lung. This work has provided a framework for the potential clinical implementation of PRM-guided treatment planning.


Asunto(s)
Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Estudios de Factibilidad , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
7.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1222-L1228, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320267

RESUMEN

Parametric response mapping (PRM) is a computed tomography (CT)-based method to phenotype patients with chronic obstructive pulmonary disease (COPD). It is capable of differentiating emphysema-related air trapping with nonemphysematous air trapping (small airway disease), which helps to identify the extent and localization of the disease. Most studies evaluating the gene expression in smokers and COPD patients related this to spirometric measurements, but none have investigated the relationship with CT-based measurements of lung structure. The current study aimed to examine gene expression profiles of brushed bronchial epithelial cells in association with the PRM-defined CT-based measurements of emphysema (PRMEmph) and small airway disease (PRMfSAD). Using the Top Institute Pharma (TIP) study cohort (COPD = 12 and asymptomatic smokers = 32), we identified a gene expression signature of bronchial brushings, which was associated with PRMEmph in the lungs. One hundred thirty-three genes were identified to be associated with PRMEmph. Among the most significantly associated genes, CXCL11 is a potent chemokine involved with CD8+ T cell activation during inflammation in COPD, indicating that it may play an essential role in the development of emphysema. The PRMEmph signature was then replicated in two independent data sets. Pathway analysis showed that the PRMEmph signature is associated with proinflammatory and notch signaling pathways. Together these findings indicate that airway epithelium may play a role in the development of emphysema and/or may act as a biomarker for the presence of emphysema. In contrast, its role in relation to functional small airways disease is less clear.


Asunto(s)
Bronquios/diagnóstico por imagen , Bronquios/patología , Perfilación de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Enfisema Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Bronquios/fisiopatología , Femenino , Volumen Espiratorio Forzado , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/patología , Enfisema Pulmonar/fisiopatología
8.
Am J Transplant ; 20(8): 2198-2205, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32034974

RESUMEN

Parametric response mapping (PRM) is a novel computed tomography (CT) technology that has shown potential for assessment of bronchiolitis obliterans syndrome (BOS) after hematopoietic stem cell transplantation (HCT). The primary aim of this study was to evaluate whether variations in image acquisition under real-world conditions affect the PRM measurements of clinically diagnosed BOS. CT scans were obtained retrospectively from 72 HCT recipients with BOS and graft-versus-host disease from Fred Hutchinson Cancer Research Center, Karolinska Institute, and the University of Michigan. Whole lung volumetric scans were performed at inspiration and expiration using site-specific acquisition and reconstruction protocols. PRM and pulmonary function measurements were assessed. Patients with moderately severe BOS at diagnosis (median forced expiratory volume at 1 second [FEV1] 53.5% predicted) had similar characteristics between sites. Variations in site-specific CT acquisition protocols had a negligible effect on the PRM-derived small airways disease (SAD), that is, BOS measurements. PRM-derived SAD was found to correlate with FEV1% predicted and FEV1/ forced vital capacity (R = -0.236, P = .046; and R = -0.689, P < .0001, respectively), which suggests that elevated levels in the PRM measurements are primarily affected by BOS airflow obstruction and not CT scan acquisition parameters. Based on these results, PRM may be applied broadly for post-HCT diagnosis and monitoring of BOS.


Asunto(s)
Bronquiolitis Obliterante , Trasplante de Células Madre Hematopoyéticas , Trasplante de Pulmón , Bronquiolitis Obliterante/diagnóstico por imagen , Bronquiolitis Obliterante/etiología , Volumen Espiratorio Forzado , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Pulmón , Estudios Retrospectivos
9.
Am J Respir Crit Care Med ; 199(3): 286-301, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304637

RESUMEN

The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study, which began in 2007, is an ongoing multicenter observational cohort study of more than 10,000 current and former smokers. The study is aimed at understanding the etiology, progression, and heterogeneity of chronic obstructive pulmonary disease (COPD). In addition to genetic analysis, the participants have been extensively characterized by clinical questionnaires, spirometry, volumetric inspiratory and expiratory computed tomography, and longitudinal follow-up, including follow-up computed tomography at 5 years after enrollment. The purpose of this state-of-the-art review is to summarize the major advances in our understanding of COPD resulting from the imaging findings in the COPDGene study. Imaging features that are associated with adverse clinical outcomes include early interstitial lung abnormalities, visual presence and pattern of emphysema, the ratio of pulmonary artery to ascending aortic diameter, quantitative evaluation of emphysema, airway wall thickness, and expiratory gas trapping. COPD is characterized by the early involvement of the small conducting airways, and the addition of expiratory scans has enabled measurement of small airway disease. Computational advances have enabled indirect measurement of nonemphysematous gas trapping. These metrics have provided insights into the pathogenesis and prognosis of COPD and have aided early identification of disease. Important quantifiable extrapulmonary findings include coronary artery calcification, cardiac morphology, intrathoracic and extrathoracic fat, and osteoporosis. Current active research includes identification of novel quantitative measures for emphysema and airway disease, evaluation of dose reduction techniques, and use of deep learning for phenotyping COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/genética , Tomografía Computarizada por Rayos X/métodos , Estudios de Cohortes , Progresión de la Enfermedad , Humanos , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Índice de Severidad de la Enfermedad
10.
Am J Respir Crit Care Med ; 200(5): 575-581, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30794432

RESUMEN

Rationale: Evidence suggests damage to small airways is a key pathologic lesion in chronic obstructive pulmonary disease (COPD). Computed tomography densitometry has been demonstrated to identify emphysema, but no such studies have been performed linking an imaging metric to small airway abnormality.Objectives: To correlate ex vivo parametric response mapping (PRM) analysis to in vivo lung tissue measurements of patients with severe COPD treated by lung transplantation and control subjects.Methods: Resected lungs were inflated, frozen, and systematically sampled, generating 33 COPD (n = 11 subjects) and 22 control tissue samples (n = 3 subjects) for micro-computed tomography analysis of terminal bronchioles (TBs; last generation of conducting airways) and emphysema.Measurements and Main Results: PRM analysis was conducted to differentiate functional small airways disease (PRMfSAD) from emphysema (PRMEmph). In COPD lungs, TB numbers were reduced (P = 0.01); surviving TBs had increased wall area percentage (P < 0.001), decreased circularity (P < 0.001), reduced cross-sectional luminal area (P < 0.001), and greater airway obstruction (P = 0.008). COPD lungs had increased airspace size (P < 0.001) and decreased alveolar surface area (P < 0.001). Regression analyses demonstrated unique correlations between PRMfSAD and TBs, with decreased circularity (P < 0.001), decreased luminal area (P < 0.001), and complete obstruction (P = 0.008). PRMEmph correlated with increased airspace size (P < 0.001), decreased alveolar surface area (P = 0.003), and fewer alveolar attachments per TB (P = 0.01).Conclusions: PRMfSAD identifies areas of lung tissue with TB loss, luminal narrowing, and obstruction. This is the first confirmation that an imaging biomarker can identify terminal bronchial pathology in established COPD and provides a noninvasive imaging methodology to identify small airway damage in COPD.


Asunto(s)
Obstrucción de las Vías Aéreas/diagnóstico por imagen , Biomarcadores , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Microtomografía por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
Pediatr Radiol ; 50(7): 923-934, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162080

RESUMEN

BACKGROUND: Assessment tools for early cystic fibrosis (CF) lung disease are limited. Detecting early pulmonary disease is crucial to increasing life expectancy by starting interventions to slow the progression of the pulmonary disease with the many treatment options available. OBJECTIVE: To compare the utility of lung T1-mapping MRI with ultrashort echo time (UTE) MRI in children with cystic fibrosis in detecting early stage lung disease and monitoring pulmonary exacerbations. MATERIALS AND METHODS: We performed a prospective study in 16 children between September 2017 and January 2018. In Phase 1, we compared five CF patients with normal spirometry (mean 11.2 years) to five age- and gender-matched healthy volunteers. In Phase 2, we longitudinally evaluated six CF patients (median 11 years) in acute pulmonary exacerbation. All children had non-contrast lung T1-mapping and UTE MRI and spirometry testing. We compared the mean normalized T1 value and percentage lung volume without T1 value in CF patients and healthy subjects in Phase 1 and during treatment in Phase 2. We also performed cystic fibrosis MRI scoring. We evaluated differences in continuous variables using standard statistical tests. RESULTS: In Phase 1, mean normalized T1 values of the lung were significantly lower in CF patients in comparison to healthy controls (P=0.02) except in the right lower lobe (P=0.29). The percentage lung volume without T1 value was also significantly higher in CF patients (P=0.006). UTE MRI showed no significant differences between CF patients and healthy volunteers (P=0.11). In Phase 2, excluding one outlier case who developed systemic disease in the course of treatment, the whole-lung T1 value increased (P=0.001) and perfusion scoring improved (P=0.02) following therapy. We observed no other significant changes in the MRI scoring. CONCLUSION: Lung T1-mapping MRI can detect early regional pulmonary CF disease in children and might be helpful in the assessment of acute pulmonary exacerbations.


Asunto(s)
Fibrosis Quística/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Estudios de Casos y Controles , Niño , Estudios Transversales , Fibrosis Quística/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Proyectos Piloto , Estudios Prospectivos , Pruebas de Función Respiratoria
12.
J Allergy Clin Immunol ; 144(1): 83-93, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30682455

RESUMEN

BACKGROUND: Asthma is a disease characterized by ventilation heterogeneity (VH). A number of studies have demonstrated that VH markers derived by using impulse oscillometry (IOS) or multiple-breath washout (MBW) are associated with key asthmatic patient-related outcome measures and airways hyperresponsiveness. However, the topographical mechanisms of VH in the lung remain poorly understood. OBJECTIVES: We hypothesized that specific regionalization of topographical small-airway disease would best account for IOS- and MBW-measured indices in patients. METHODS: We evaluated the results of paired expiratory/inspiratory computed tomography in a cohort of asthmatic (n = 41) and healthy (n = 11) volunteers to understand the determinants of clinical VH indices commonly reported by using IOS and MBW. Parametric response mapping (PRM) was used to calculate the functional small-airways disease marker PRMfSAD and Hounsfield unit (HU)-based density changes from total lung capacity to functional residual capacity (ΔHU); gradients of ΔHU in gravitationally perpendicular (parallel) inferior-superior (anterior-posterior) axes were quantified. RESULTS: The ΔHU gradient in the inferior-superior axis provided the highest level of discrimination of both acinar VH (measured by using phase 3 slope analysis of multiple-breath washout data) and resistance at 5 Hz minus resistance at 20 Hz measured by using impulse oscillometry (R5-R20) values. Patients with a high inferior-superior ΔHU gradient demonstrated evidence of reduced specific ventilation in the lower lobes of the lungs and high levels of PRMfSAD. A computational small-airway tree model confirmed that constriction of gravitationally dependent, lower-zone, small-airway branches would promote the largest increases in R5-R20 values. Ventilation gradients correlated with asthma control and quality of life but not with exacerbation frequency. CONCLUSIONS: Lower lobe-predominant small-airways disease is a major driver of clinically measured VH in adults with asthma.


Asunto(s)
Asma/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Adulto , Anciano , Asma/tratamiento farmacológico , Asma/fisiopatología , Broncodilatadores/uso terapéutico , Volumen Espiratorio Forzado , Humanos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X , Capacidad Vital
13.
Respir Res ; 20(1): 269, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791337

RESUMEN

Impaired single breath carbon monoxide diffusing capacity (DLCO) is associated with emphysema. Small airways disease (SAD) may be a precursor lesion to emphysema, but the relationship between SAD and DLCO is undescribed. We hypothesized that in mild COPD, functional SAD (fSAD) defined by computed tomography (CT) and Parametric Response Mapping methodology would correlate with impaired DLCO. Using data from ever-smokers in the COPDGene cohort, we established that fSAD correlated significantly with lower DLCO among both non-obstructed and GOLD 1-2 subjects. The relationship between DLCO with CT-defined emphysema was present in all GOLD stages, but most prominent in severe disease. TRIAL REGISTRATION: NCT00608764. Registry: COPDGene. Registered 06 February 2008, retrospectively registered.


Asunto(s)
Obstrucción de las Vías Aéreas/diagnóstico por imagen , Bronquiolos/patología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/genética , Anciano , Obstrucción de las Vías Aéreas/patología , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Bronquiolos/anomalías , Monóxido de Carbono/metabolismo , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Capacidad de Difusión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Análisis de Regresión , Pruebas de Función Respiratoria , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X/métodos
17.
Am J Respir Crit Care Med ; 195(7): 942-952, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27779421

RESUMEN

RATIONALE: The predominant cause of chronic lung allograft failure is small airway obstruction arising from bronchiolitis obliterans. However, clinical methodologies for evaluating presence and degree of small airway disease are lacking. OBJECTIVES: To determine if parametric response mapping (PRM), a novel computed tomography voxel-wise methodology, can offer insight into chronic allograft failure phenotypes and provide prognostic information following spirometric decline. METHODS: PRM-based computed tomography metrics quantifying functional small airways disease (PRMfSAD) and parenchymal disease (PRMPD) were compared between bilateral lung transplant recipients with irreversible spirometric decline and control subjects matched by time post-transplant (n = 22). PRMfSAD at spirometric decline was evaluated as a prognostic marker for mortality in a cohort study via multivariable restricted mean models (n = 52). MEASUREMENTS AND MAIN RESULTS: Patients presenting with an isolated decline in FEV1 (FEV1 First) had significantly higher PRMfSAD than control subjects (28% vs. 15%; P = 0.005), whereas patients with concurrent decline in FEV1 and FVC had significantly higher PRMPD than control subjects (39% vs. 20%; P = 0.02). Over 8.3 years of follow-up, FEV1 First patients with PRMfSAD greater than or equal to 30% at spirometric decline lived on average 2.6 years less than those with PRMfSAD less than 30% (P = 0.004). In this group, PRMfSAD greater than or equal to 30% was the strongest predictor of survival in a multivariable model including bronchiolitis obliterans syndrome grade and baseline FEV1% predicted (P = 0.04). CONCLUSIONS: PRM is a novel imaging tool for lung transplant recipients presenting with spirometric decline. Quantifying underlying small airway obstruction via PRMfSAD helps further stratify the risk of death in patients with diverse spirometric decline patterns.


Asunto(s)
Obstrucción de las Vías Aéreas/diagnóstico por imagen , Rechazo de Injerto/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Trasplante de Pulmón , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adulto , Obstrucción de las Vías Aéreas/fisiopatología , Biomarcadores , Estudios de Cohortes , Femenino , Volumen Espiratorio Forzado , Rechazo de Injerto/fisiopatología , Humanos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Receptores de Trasplantes
18.
Am J Respir Crit Care Med ; 195(4): 464-472, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27564413

RESUMEN

RATIONALE: Aging is associated with reduced FEV1 to FVC ratio (FEV1/FVC), hyperinflation, and alveolar enlargement, but little is known about how age affects small airways. OBJECTIVES: To determine if chest computed tomography (CT)-assessed functional small airway would increase with age, even among asymptomatic individuals. METHODS: We used parametric response mapping analysis of paired inspiratory/expiratory CTs to identify functional small airway abnormality (PRMFSA) and emphysema (PRMEMPH) in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) cohort. Using adjusted linear regression models, we analyzed associations between PRMFSA and age in subjects with or without airflow obstruction. We subdivided participants with normal spirometry based on respiratory-related impairment (6-minute-walk distance <350 m, modified Medical Research Council ≥2, chronic bronchitis, St. George's Respiratory Questionnaire >25, respiratory events requiring treatment [antibiotics and/or steroids or hospitalization] in the year before enrollment). MEASUREMENTS AND MAIN RESULTS: Among 580 never- and ever-smokers without obstruction or respiratory impairment, PRMFSA increased 2.7% per decade, ranging from 3.6% (ages 40-50 yr) to 12.7% (ages 70-80 yr). PRMEMPH increased nonsignificantly (0.1% [ages 40-50 yr] to 0.4% [ages 70-80 yr]; P = 0.34). Associations were similar among nonobstructed individuals with respiratory-related impairment. Increasing PRMFSA in subjects without airflow obstruction was associated with increased FVC (P = 0.004) but unchanged FEV1 (P = 0.94), yielding lower FEV1/FVC ratios (P < 0.001). Although emphysema was also significantly associated with lower FEV1/FVC (P = 0.04), its contribution relative to PRMFSA in those without airflow obstruction was limited by its low burden. CONCLUSIONS: In never- and ever-smokers without airflow obstruction, aging is associated with increased FVC and CT-defined functional small airway abnormality regardless of respiratory symptoms.


Asunto(s)
Envejecimiento/patología , Obstrucción de las Vías Aéreas/patología , Pulmón/patología , Enfisema Pulmonar/patología , Fumar/patología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Obstrucción de las Vías Aéreas/diagnóstico por imagen , Obstrucción de las Vías Aéreas/fisiopatología , Estudios de Cohortes , Estudios Transversales , Femenino , Volumen Espiratorio Forzado/fisiología , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Análisis Multivariante , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/fisiopatología , Fumar/efectos adversos , Espirometría , Tomografía Computarizada por Rayos X , Capacidad Vital/fisiología
19.
Am J Respir Crit Care Med ; 194(2): 178-84, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26808615

RESUMEN

RATIONALE: The small conducting airways are the major site of airflow obstruction in chronic obstructive pulmonary disease and may precede emphysema development. OBJECTIVES: We hypothesized a novel computed tomography (CT) biomarker of small airway disease predicts FEV1 decline. METHODS: We analyzed 1,508 current and former smokers from COPDGene with linear regression to assess predictors of change in FEV1 (ml/yr) over 5 years. Separate models for subjects without and with airflow obstruction were generated using baseline clinical and physiologic predictors in addition to two novel CT metrics created by parametric response mapping (PRM), a technique pairing inspiratory and expiratory CT images to define emphysema (PRM(emph)) and functional small airways disease (PRM(fSAD)), a measure of nonemphysematous air trapping. MEASUREMENTS AND MAIN RESULTS: Mean (SD) rate of FEV1 decline in ml/yr for GOLD (Global Initiative for Chronic Obstructive Lung Disease) 0-4 was as follows: 41.8 (47.7), 53.8 (57.1), 45.6 (61.1), 31.6 (43.6), and 5.1 (35.8), respectively (trend test for grades 1-4; P < 0.001). In multivariable linear regression, for participants without airflow obstruction, PRM(fSAD) but not PRM(emph) was associated with FEV1 decline (P < 0.001). In GOLD 1-4 participants, both PRM(fSAD) and PRM(emph) were associated with FEV1 decline (P < 0.001 and P = 0.001, respectively). Based on the model, the proportional contribution of the two CT metrics to FEV1 decline, relative to each other, was 87% versus 13% and 68% versus 32% for PRM(fSAD) and PRM(emph) in GOLD 1/2 and 3/4, respectively. CONCLUSIONS: CT-assessed functional small airway disease and emphysema are associated with FEV1 decline, but the association with functional small airway disease has greatest importance in mild-to-moderate stage chronic obstructive pulmonary disease where the rate of FEV1 decline is the greatest. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764).


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Sistema Respiratorio/fisiopatología , Femenino , Volumen Espiratorio Forzado/fisiología , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Sistema Respiratorio/diagnóstico por imagen , Espirometría , Tomografía Computarizada por Rayos X
20.
Biol Blood Marrow Transplant ; 20(10): 1592-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24954547

RESUMEN

The management of bronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation presents many challenges, both diagnostically and therapeutically. We developed a computed tomography (CT) voxel-wise methodology termed parametric response mapping (PRM) that quantifies normal parenchyma, functional small airway disease (PRM(fSAD)), emphysema, and parenchymal disease as relative lung volumes. We now investigate the use of PRM as an imaging biomarker in the diagnosis of BOS. PRM was applied to CT data from 4 patient cohorts: acute infection (n = 11), BOS at onset (n = 34), BOS plus infection (n = 9), and age-matched, nontransplant control subjects (n = 23). Pulmonary function tests and bronchoalveolar lavage were used for group classification. Mean values for PRM(fSAD) were significantly greater in patients with BOS (38% ± 2%) when compared with those with infection alone (17% ± 4%, P < .0001) and age-matched control subjects (8.4% ± 1%, P < .0001). Patients with BOS had similar PRM(fSAD) profiles, whether a concurrent infection was present or not. An optimal cut-point for PRM(fSAD) of 28% of the total lung volume was identified, with values >28% highly indicative of BOS occurrence. PRM may provide a major advance in our ability to identify the small airway obstruction that characterizes BOS, even in the presence of concurrent infection.


Asunto(s)
Bronquiolitis Obliterante/diagnóstico por imagen , Neoplasias Hematológicas/diagnóstico por imagen , Trasplante de Células Madre Hematopoyéticas , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Acondicionamiento Pretrasplante/métodos , Adolescente , Adulto , Anciano , Bronquiolitis Obliterante/etiología , Bronquiolitis Obliterante/inmunología , Bronquiolitis Obliterante/microbiología , Líquido del Lavado Bronquioalveolar/microbiología , Estudios de Casos y Controles , Niño , Femenino , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/microbiología , Humanos , Pulmón/inmunología , Pulmón/microbiología , Masculino , Persona de Mediana Edad , Agonistas Mieloablativos/uso terapéutico , Estudios Prospectivos , Pruebas de Función Respiratoria , Síndrome , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA