Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Support Care Cancer ; 31(3): 174, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809496

RESUMEN

BACKGROUND: On the basis of substantial evidence demonstrate that palliative care combined with standard care improves patient, caregiver, and society outcomes, we have developed a new healthcare model called radiotherapy and palliative care (RaP) outpatient clinic were a radiation oncologist and a palliative care physician make a joint evaluation of advanced cancer patients. METHODS: We performed a monocentric observational cohort study on advanced cancer patients referred for evaluation at the RaP outpatient clinic. Measures of quality of care were carried out. RESULTS: Between April 2016 and April 2018, 287 joint evaluations were performed and 260 patients were evaluated. The primary tumor was lung in 31.9% of cases. One hundred fifty (52.3%) evaluations resulted in an indication for palliative radiotherapy treatment. In 57.6% of cases was used a single dose fraction of radiotherapy (8 Gy). All the irradiated cohort completed the palliative radiotherapy treatment. An 8% of irradiated patients received the palliative radiotherapy treatment in the last 30 days of life. A total of 80% of RaP patients received palliative care assistance until the end of life. CONCLUSION: At the first descriptive analysis, the radiotherapy and palliative care model seem to respond to the need of multidisciplinary approach in order to obtain an improvement on quality of care for advanced cancer patients.


Asunto(s)
Neoplasias , Oncología por Radiación , Humanos , Cuidados Paliativos/métodos , Neoplasias/patología , Instituciones de Atención Ambulatoria , Atención a la Salud
2.
Small ; 17(41): e2103044, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34477325

RESUMEN

On-surface Ullmann coupling is an established method for the synthesis of 1D and 2D organic structures. A key limitation to obtaining ordered polymers is the uncertainty in the final structure for coupling via random diffusion of reactants over the substrate, which leads to polymorphism and defects. Here, a topotactic polymerization on Cu(110) in a series of differently-halogenated para-phenylenes is identified, where the self-assembled organometallic (OM) reactants of diiodobenzene couple directly into a single, deterministic product, whereas the other precursors follow a diffusion driven reaction. The topotactic mechanism is the result of the structure of the iodine on Cu(110), which controls the orientation of the OM reactants and intermediates to be the same as the final polymer chains. Temperature-programmed X-ray photoelectron spectroscopy and kinetic modeling reflect the differences in the polymerization regimes, and the effects of the OM chain alignments and halogens are disentangled by Nudged Elastic Band calculations. It is found that the repulsion or attraction between chains and halogens drive the polymerization to be either diffusive or topotactic. These results provide detailed insights into on-surface reaction mechanisms and prove the possibility of harnessing topotactic reactions in surface-confined Ullmann polymerization.

3.
Small ; 16(35): e2002393, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32761784

RESUMEN

While surface-confined Ullmann-type coupling has been widely investigated for its potential to produce π-conjugated polymers with unique properties, the pathway of this reaction in the presence of adsorbed oxygen has yet to be explored. Here, the effect of oxygen adsorption between different steps of the polymerization reaction is studied, revealing an unexpected transformation of the 1D organometallic (OM) chains to 2D OM networks by annealing, rather than the 1D polymer obtained on pristine surfaces. Characterization by scanning tunneling microscopy and X-ray photoelectron spectroscopy indicates that the networks consist of OM segments stabilized by chemisorbed oxygen at the vertices of the segments, as supported by density functional theory calculations. Hexagonal 2D OM networks with different sizes on Cu(111) can be created using precursors with different length, either 4,4″-dibromo-p-terphenyl or 1,4-dibromobenzene (dBB), and square networks are obtained from dBB on Cu(100). The control over size and symmetry illustrates a versatile surface patterning technique, with potential applications in confined reactions and host-guest chemistry.

4.
Angew Chem Int Ed Engl ; 59(50): 22785-22789, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32926497

RESUMEN

To facilitate C-C coupling in on-surface synthesis on inert surfaces, we devised a radical deposition source (RDS) for the direct deposition of aryl radicals onto arbitrary substrates. Its core piece is a heated reactive drift tube through which halogenated precursors are deposited and en route converted into radicals. For the proof of concept we study 4,4''-diiodo-p-terphenyl (DITP) precursors on iodine-passivated metal surfaces. Deposition with the RDS at room temperature results in highly regular structures comprised of mostly monomeric (terphenyl) or dimeric (sexiphenyl) biradicals. Mild heating activates progressive C-C coupling into more extended molecular wires. These structures are distinctly different from the self-assemblies observed upon conventional deposition of intact DITP. Direct deposition of radicals renders substrate reactivity unnecessary, thereby paving the road for synthesis on application-relevant inert surfaces.

5.
Faraday Discuss ; 204: 453-469, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28770938

RESUMEN

Ullmann coupling is the most common approach to form surface-confined one- and two-dimensional conjugated structures from haloaryl derivatives. The dimensions of the formed nanostructures can be controlled by the number and location of halogens within the molecular precursors. Our study illustrates that the type of halogen plays an essential role in the design, orientation, and extent of the surface-confined organometallic and polymeric nanostructures. We performed a comparative analysis of five 1,4-dihalobenzene molecules containing chlorine, bromine, and iodine on Cu(110) using scanning tunneling microscopy, fast-X-ray photoelectron and near edge X-ray absorption fine structure spectroscopies. Our experimental data identify different molecular structures, reaction temperatures and kinetics depending on the halogen type. Climbing image nudged elastic band simulations further clarify these observations by providing distinct diffusion paths for each halogen species. We show that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.

6.
J Am Chem Soc ; 138(51): 16696-16702, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27958750

RESUMEN

Surface-confined polymerization via Ullmann coupling is a promising route to create one- and two-dimensional covalent π-conjugated structures, including the bottom-up growth of graphene nanoribbons. Understanding the mechanism of the Ullmann reaction is necessary to provide a platform for rationally controlling the formation of these materials. We use fast X-ray photoelectron spectroscopy (XPS) in kinetic measurements of epitaxial surface polymerization of 1,4-dibromobenzene on Cu(110) and devise a kinetic model based on mean field rate equations, involving a transient state. This state is observed in the energy landscapes calculated by nudged elastic band (NEB) within density functional theory (DFT), which assumes as initial and final geometries of the organometallic and polymeric structures those observed by scanning tunneling microscopy (STM). The kinetic model accounts for all the salient features observed in the experimental curves extracted from the fast-XPS measurements and enables an enhanced understanding of the polymerization process, which is found to follow a nucleation-and-growth behavior preceded by the formation of a transient state.

7.
Nanoscale Horiz ; 9(6): 1042-1051, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38639757

RESUMEN

Two-dimensional conjugated organogold networks with anthra-tetrathiophene repeat units are synthesized by thermally activated debrominative coupling of 2,5,9,12-tetrabromoanthra[1,2-b:4,3-b':5,6-b'':8,7-b''']tetrathiophene (TBATT) precursor molecules on Au(111) surfaces under ultra-high vacuum (UHV) conditions. Performing the reaction on iodine-passivated Au(111) surfaces promotes formation of highly regular structures, as revealed by scanning tunneling microscopy (STM). In contrast, coupling on bare Au(111) surfaces results in less regular networks due to the simultaneous expression of competing intermolecular binding motifs in the absence of error correction. The carbon-Au-carbon bonds confer remarkable robustness to the organogold networks, as evidenced by their high thermal stability. In addition, as suggested by density functional theory (DFT) calculations and underscored by scanning tunneling spectroscopy (STS), the organogold networks exhibit a small electronic band gap in the order of 1.0 eV due to their high π-conjugation.

8.
Nanoscale ; 16(15): 7612-7625, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38512302

RESUMEN

On-surface synthesis often proceeds under kinetic control due to the irreversibility of key reaction steps, rendering kinetic studies pivotal. The accurate quantification of reaction rates also bears potential for unveiling reaction mechanisms. Temperature-Programmed X-ray Photoelectron Spectroscopy (TP-XPS) has emerged as an analytical tool for kinetic studies with splendid chemical and sufficient temporal resolution. Here, we demonstrate that the common linear temperature ramps lead to fitting ambiguities. Moreover, pinpointing the reaction order remains intricate, although this key parameter entails information on atomistic mechanisms. Yet, TP-XPS experiments with a stepped temperature profile comprised of isothermal segments facilitate the direct quantification of rate constants from fitting time courses. Thereby, rate constants are obtained for a series of temperatures, which allows independent extraction of both activation energies and pre-exponentials from Arrhenius plots. By using two analogous doubly versus triply brominated aromatic model compounds, we found that their debromination on Ag(111) is best modeled by second-order kinetics and thus proceeds via the involvement of a second, non-obvious reactant. Accordingly, we propose that debromination is activated by surface supplied Ag adatoms. This hypothesis is supported by Density Functional Theory (DFT) calculations. We foresee auspicious prospects for this TP-XPS variant for further exploring the kinetics and mechanisms of on-surface reactions.

9.
ACS Nano ; 18(1): 849-857, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147033

RESUMEN

Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states. However, measuring these properties experimentally is challenging and requires long-range-ordered polymers, preferably with an epitaxial relationship with the substrate. Here, we investigate the electronic properties of a mesoscale-ordered carbonyl-bridged triphenylamine 2DCP (P2TANGO) and demonstrate the presence of a Dirac cone by combining angle-resolved photoemission spectroscopy (ARPES) with density functional theory (DFT) calculations. Moreover, we measure the absolute energy position of the Dirac cone with respect to the vacuum level. We show that the bridging functionality of the triangulene (ether vs carbonyl) does not significantly perturb the band structure but strongly affects the positioning of the bands with respect to the Au(111) states and allows control of the ionization energy of the polymer. Our results provide proof of the controllable electronic properties of 2DCPs and bring us closer to their use in practical applications.

10.
Nanoscale ; 11(16): 7682-7689, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30946426

RESUMEN

Ullmann coupling or, more generally, dehalogenative aryl-aryl coupling, is one of the most widely exploited chemical reactions to obtain one- and two-dimensional polymers on metal surfaces. It is generally described as a two-step reaction: (i) dehalogenation, resulting in the formation of a stable intermediate organometallic phase and subsequent (ii) C-C coupling. The topology of the resulting polymer depends on the number and positions of the halogen atoms in the haloaromatic precursor, although its orientation and order are determined by the structure of the intermediate phase. Hitherto, only one intermediate structure, identified as an organometallic (OM) phase, has been reported for such a reaction. Here we demonstrate the formation of two distinct OM phases during the temperature-induced growth of poly(para-phenylene) from 1,4-dibromobenzene precursors on Cu(110). Beyond the already known linear-OM chains, we show that a phase reorganization to a chessboard-like 2D-OM can be activated in a well-defined temperature range. This new intermediate phase, revealed only when the reaction is carried out at low molecular coverages, was characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy and near-edge X-ray absorption fine structure spectroscopy, and modeled by density functional theory calculations. Our data show that the 2D-OM remains stable after cooling down the sample and is stabilized by four-Cu clusters at each node. The observation of such unexpected intermediate phase shows the complexity of the mechanisms underlying on-surface synthesis and broadens the understanding of Ullmann coupling, which continues to be astonishing despite its extensive use.

11.
Nat Commun ; 7: 10235, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26725974

RESUMEN

On-surface covalent self-assembly of organic molecules is a very promising bottom-up approach for producing atomically controlled nanostructures. Due to their highly tuneable properties, these structures may be used as building blocks in electronic carbon-based molecular devices. Following this idea, here we report on the electronic structure of an ordered array of poly(para-phenylene) nanowires produced by surface-catalysed dehalogenative reaction. By scanning tunnelling spectroscopy we follow the quantization of unoccupied molecular states as a function of oligomer length, with Fermi level crossing observed for long chains. Angle-resolved photoelectron spectroscopy reveals a quasi-1D valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the band structure, including the gap size and charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA