Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Life Sci ; 79(7): 361, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697820

RESUMEN

COVID-19 is a complex disease with short- and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. Invasion of the brain by SARS-CoV-2 has been observed in humans and is postulated to be involved in post-COVID state. Brain infection is particularly pronounced in the K18-hACE2 mouse model of COVID-19. Prevention of brain infection in the acute phase of the disease might thus be of therapeutic relevance to prevent long-lasting symptoms of COVID-19. We previously showed that melatonin or two prescribed structural analogs, agomelatine and ramelteon delay the onset of severe clinical symptoms and improve survival of SARS-CoV-2-infected K18-hACE2 mice. Here, we show that treatment of K18-hACE2 mice with melatonin and two melatonin-derived marketed drugs, agomelatine and ramelteon, prevents SARS-CoV-2 entry in the brain, thereby reducing virus-induced damage of small cerebral vessels, immune cell infiltration and brain inflammation. Molecular modeling analyses complemented by experimental studies in cells showed that SARS-CoV-2 entry in endothelial cells is prevented by melatonin binding to an allosteric-binding site on human angiotensin-converting enzyme 2 (ACE2), thus interfering with ACE2 function as an entry receptor for SARS-CoV-2. Our findings open new perspectives for the repurposing of melatonergic drugs and its clinically used analogs in the prevention of brain infection by SARS-CoV-2 and COVID-19-related long-term neurological symptoms.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Melatonina , Enzima Convertidora de Angiotensina 2 , Animales , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Transgénicos , Peptidil-Dipeptidasa A , SARS-CoV-2
2.
J Hepatol ; 76(1): 11-24, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555423

RESUMEN

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.


Asunto(s)
Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Hígado Graso/prevención & control , Mitocondrias Hepáticas/metabolismo , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Animales , Proteínas Relacionadas con la Autofagia/farmacología , Modelos Animales de Enfermedad , Hígado Graso/fisiopatología , Metabolismo de los Lípidos/genética , Ratones , Mitocondrias Hepáticas/fisiología , Proteómica/métodos , Enzimas Ubiquitina-Conjugadoras/farmacología
3.
Cell Mol Life Sci ; 77(24): 5189-5205, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31900622

RESUMEN

Transmission of extracellular signals by G protein-coupled receptors typically relies on a cascade of intracellular events initiated by the activation of heterotrimeric G proteins or ß-arrestins followed by effector activation/inhibition. Here, we report an alternative signal transduction mode used by the orphan GPR50 that relies on the nuclear translocation of its carboxyl-terminal domain (CTD). Activation of the calcium-dependent calpain protease cleaves off the CTD from the transmembrane-bound GPR50 core domain between Phe-408 and Ser-409 as determined by MALDI-TOF-mass spectrometry. The cytosolic CTD then translocates into the nucleus assisted by its 'DPD' motif, where it interacts with the general transcription factor TFII-I to regulate c-fos gene transcription. RNA-Seq analysis indicates a broad role of the CTD in modulating gene transcription with ~ 8000 differentially expressed genes. Our study describes a non-canonical, direct signaling mode of GPCRs to the nucleus with similarities to other receptor families such as the NOTCH receptor.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Unión Proteica/genética , Receptores Notch , Transducción de Señal/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
PLoS Biol ; 12(3): e1001808, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24618750

RESUMEN

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.


Asunto(s)
Encéfalo/metabolismo , Células Endoteliales/metabolismo , Fertilidad/fisiología , Neuropilina-1/fisiología , Semaforina-3A/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Ciclo Estral/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/fisiología , Ligandos , Hormona Luteinizante/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuropilina-1/metabolismo , Ratas , Ratas Sprague-Dawley , Semaforina-3A/genética , Semaforina-3A/fisiología , Transducción de Señal
5.
Brain Commun ; 2(2): fcaa105, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954345

RESUMEN

Administration of recombinant glial cell line-derived neurotrophic factor into the putamen has been tested in preclinical and clinical studies to evaluate its neuroprotective effects on the progressive dopaminergic neuronal degeneration that characterizes Parkinson's disease. However, intracerebral glial cell line-derived neurotrophic factor infusion is a challenging therapeutic strategy, with numerous potential technical and medical limitations. Most of these limitations could be avoided if the production of endogenous glial cell line-derived neurotrophic factor could be increased. Glial cell line-derived neurotrophic factor is naturally produced in the striatum from where it exerts a trophic action on the nigrostriatal dopaminergic pathway. Most of striatal glial cell line-derived neurotrophic factor is synthesized by a subset of GABAergic interneurons characterized by the expression of parvalbumin. We sought to identify molecular targets specific to those neurons and which are putatively associated with glial cell line-derived neurotrophic factor synthesis. To this end, the transcriptomic differences between glial cell line-derived neurotrophic factor-positive parvalbumin neurons in the striatum and parvalbumin neurons located in the nearby cortex, which do not express glial cell line-derived neurotrophic factor, were analysed. Using mouse reporter models, we have defined the genomic signature of striatal parvalbumin interneurons obtained by fluorescence-activated cell sorting followed by microarray comparison. Short-listed genes were validated by additional histological and molecular analyses. These genes code for membrane receptors (Kit, Gpr83, Tacr1, Tacr3, Mc3r), cytosolic proteins (Pde3a, Crabp1, Rarres2, Moxd1) and a transcription factor (Lhx8). We also found the proto-oncogene cKit to be highly specific of parvalbumin interneurons in the non-human primate striatum, thus highlighting a conserved expression between species and suggesting that specific genes identified in mouse parvalbumin neurons could be putative targets in the human brain. Pharmacological stimulation of four G-protein-coupled receptors enriched in the striatal parvalbumin interneurons inhibited Gdnf expression presumably by decreasing cyclic adenosine monophosphate formation. Additional experiments with pharmacological modulators of adenylyl cyclase and protein kinase A indicated that this pathway is a relevant intracellular route to induce Gdnf gene activation. This preclinical study is an important step in the ongoing development of a specific pro-endo-glial cell line-derived neurotrophic factor pharmacological strategy to treat Parkinson's disease.

6.
Neuron ; 107(2): 306-319.e9, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32407670

RESUMEN

Melanin-concentrating hormone (MCH)-expressing neurons are key regulators of energy and glucose homeostasis. Here, we demonstrate that they provide dense projections to the median eminence (ME) in close proximity to tanycytes and fenestrated vessels. Chemogenetic activation of MCH neurons as well as optogenetic stimulation of their projections in the ME enhance permeability of the ME by increasing fenestrated vascular loops and enhance leptin action in the arcuate nucleus of the hypothalamus (ARC). Unbiased phosphoRiboTrap-based assessment of cell activation upon chemogenetic MCH neuron activation reveals MCH-neuron-dependent regulation of endothelial cells. MCH neurons express the vascular endothelial growth factor A (VEGFA), and blocking VEGF-R signaling attenuates the leptin-sensitizing effect of MCH neuron activation. Our experiments reveal that MCH neurons directly regulate permeability of the ME barrier, linking the activity of energy state and sleep regulatory neurons to the regulation of hormone accessibility to the ARC.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Hormonas Hipotalámicas/fisiología , Eminencia Media/fisiología , Melaninas/fisiología , Neuronas/fisiología , Hormonas Hipofisarias/fisiología , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Vasos Sanguíneos/fisiología , Capilares/fisiología , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Células Endoteliales/fisiología , Leptina/fisiología , Eminencia Media/irrigación sanguínea , Ratones , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/biosíntesis
7.
Mol Metab ; 39: 101022, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32446877

RESUMEN

OBJECTIVES: Infections, cancer, and systemic inflammation elicit anorexia. Despite the medical significance of this phenomenon, the question of how peripheral inflammatory mediators affect the central regulation of food intake is incompletely understood. Therefore, we have investigated the sickness behavior induced by the prototypical inflammatory mediator IL-1ß. METHODS: IL-1ß was injected intravenously. To interfere with IL-1ß signaling, we deleted the essential modulator of NF-κB signaling (Nemo) in astrocytes and tanycytes. RESULTS: Systemic IL-1ß increased the activity of the transcription factor NF-κB in tanycytes of the mediobasal hypothalamus (MBH). By activating NF-κB signaling, IL-1ß induced the expression of cyclooxygenase-2 (Cox-2) and stimulated the release of the anorexigenic prostaglandin E2 (PGE2) from tanycytes. When we deleted Nemo in astrocytes and tanycytes, the IL-1ß-induced anorexia was alleviated whereas the fever response and lethargy response were unchanged. Similar results were obtained after the selective deletion of Nemo exclusively in tanycytes. CONCLUSIONS: Tanycytes form the brain barrier that mediates the anorexic effect of systemic inflammation in the hypothalamus.


Asunto(s)
Anorexia/etiología , Células Ependimogliales/metabolismo , Inflamación/complicaciones , Inflamación/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Animales , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Inflamación/patología , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratas
8.
Nat Commun ; 9(1): 1216, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572483

RESUMEN

Transforming growth factor-ß (TGFß) signaling is initiated by the type I, II TGFß receptor (TßRI/TßRII) complex. Here we report the formation of an alternative complex between TßRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TßRI induces spontaneous TßRI-dependent Smad and non-Smad signaling by stabilizing the active TßRI conformation and competing for the binding of the negative regulator FKBP12 to TßRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TßRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFß-independent activation mode of TßRI and identifies GPR50 as a TßRI co-receptor with potential impact on cancer development.


Asunto(s)
Neoplasias Mamarias Animales/prevención & control , Proteínas del Tejido Nervioso/fisiología , Receptor Tipo I de Factor de Crecimiento Transformador beta/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Endosomas/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Proteínas Smad/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo
9.
Nat Neurosci ; 19(6): 835-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27135215

RESUMEN

A sparse population of a few hundred primarily hypothalamic neurons forms the hub of a complex neuroglial network that controls reproduction in mammals by secreting the 'master molecule' gonadotropin-releasing hormone (GnRH). Timely postnatal changes in GnRH expression are essential for puberty and adult fertility. Here we report that a multilayered microRNA-operated switch with built-in feedback governs increased GnRH expression during the infantile-to-juvenile transition and that impairing microRNA synthesis in GnRH neurons leads to hypogonadotropic hypogonadism and infertility in mice. Two essential components of this switch, miR-200 and miR-155, respectively regulate Zeb1, a repressor of Gnrh transcriptional activators and Gnrh itself, and Cebpb, a nitric oxide-mediated repressor of Gnrh that acts both directly and through Zeb1, in GnRH neurons. This alteration in the delicate balance between inductive and repressive signals induces the normal GnRH-fuelled run-up to correct puberty initiation, and interfering with this process disrupts the neuroendocrine control of reproduction.


Asunto(s)
Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , MicroARNs/metabolismo , Reproducción/fisiología , Maduración Sexual/fisiología , Envejecimiento , Animales , Fertilidad/fisiología , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Nat Commun ; 6: 6385, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25721933

RESUMEN

Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.


Asunto(s)
Antígenos CD/farmacología , Eminencia Media/fisiología , Neuroglía/metabolismo , Plasticidad Neuronal/fisiología , Semaforinas/farmacología , Análisis de Varianza , Animales , Antígenos CD/administración & dosificación , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Estradiol/análogos & derivados , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Plasticidad Neuronal/efectos de los fármacos , Ovariectomía , Progesterona , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Semaforinas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA