Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7926): 320-326, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045291

RESUMEN

The nervous system uses various coding strategies to process sensory inputs. For example, the olfactory system uses large receptor repertoires and is wired to recognize diverse odours, whereas the visual system provides high acuity of object position, form and movement1-5. Compared to external sensory systems, principles that underlie sensory processing by the interoceptive nervous system remain poorly defined. Here we developed a two-photon calcium imaging preparation to understand internal organ representations in the nucleus of the solitary tract (NTS), a sensory gateway in the brainstem that receives vagal and other inputs from the body. Focusing on gut and upper airway stimuli, we observed that individual NTS neurons are tuned to detect signals from particular organs and are topographically organized on the basis of body position. Moreover, some mechanosensory and chemosensory inputs from the same organ converge centrally. Sensory inputs engage specific NTS domains with defined locations, each containing heterogeneous cell types. Spatial representations of different organs are further sharpened in the NTS beyond what is achieved by vagal axon sorting alone, as blockade of brainstem inhibition broadens neural tuning and disorganizes visceral representations. These findings reveal basic organizational features used by the brain to process interoceptive inputs.


Asunto(s)
Tronco Encefálico , Sensación , Tronco Encefálico/anatomía & histología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Calcio/metabolismo , Postura/fisiología , Sensación/fisiología , Células Receptoras Sensoriales/fisiología , Núcleo Solitario/anatomía & histología , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Nervio Vago/fisiología
3.
Sci Rep ; 12(1): 10213, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715545

RESUMEN

Enzymes that facilitate the local deposition of electron dense reaction products have been widely used as labels in electron microscopy (EM) for the identification of synaptic contacts in neural tissue. Peroxidases, in particular, can efficiently metabolize 3,3'-diaminobenzidine tetrahydrochloride hydrate (DAB) to produce precipitates with high contrast under EM following heavy metal staining, and can be genetically encoded to facilitate the labeling of specific cell-types or organelles. Nevertheless, the peroxidase/DAB method has so far not been reported to work in a multiplexed manner in combination with 3D volume EM techniques (e.g. Serial blockface electron microscopy, SBEM; Focused ion beam electron microscopy, FIBSEM) that are favored for the large-scale ultrastructural assessment of synaptic architecture However, a recently described peroxidase with enhanced enzymatic activity (dAPEX2) can efficienty deposit EM-visible DAB products in thick tissue without detergent treatment opening the possibility for the multiplex labeling of genetically defined cell-types in combination with volume EM methods. Here we demonstrate that multiplexed dAPEX2/DAB tagging is compatible with both FIBSEM and SBEM volume EM approaches and use them to map long-range genetically identified synaptic inputs from the anterior cingulate cortex to the periaqueductal gray in the mouse brain.


Asunto(s)
Peroxidasa , Peroxidasas , Animales , Ratones , Microscopía Electrónica , Orgánulos , Peroxidasas/química , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA