Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 157(4): 950-63, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813616

RESUMEN

A new level of chromosome organization, topologically associating domains (TADs), was recently uncovered by chromosome conformation capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model's predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation.


Asunto(s)
Cromosomas/química , Transcripción Genética , Inactivación del Cromosoma X , Animales , Cromatina/química , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones , Modelos Biológicos , Modelos Moleculares , ARN Largo no Codificante/metabolismo
2.
Mol Cell ; 77(2): 352-367.e8, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31759823

RESUMEN

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.


Asunto(s)
Secuencia Conservada/genética , ARN Largo no Codificante/genética , Cromosoma X/genética , Animales , Línea Celular , Elementos de Facilitación Genéticos/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN sin Sentido/genética , Elementos Silenciadores Transcripcionales/genética , Transcripción Genética/genética
3.
Annu Rev Genet ; 52: 535-566, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30256677

RESUMEN

In somatic nuclei of female therian mammals, the two X chromosomes display very different chromatin states: One X is typically euchromatic and transcriptionally active, and the other is mostly silent and forms a cytologically detectable heterochromatic structure termed the Barr body. These differences, which arise during female development as a result of X-chromosome inactivation (XCI), have been the focus of research for many decades. Initial approaches to define the structure of the inactive X chromosome (Xi) and its relationship to gene expression mainly involved microscopy-based approaches. More recently, with the advent of genomic techniques such as chromosome conformation capture, molecular details of the structure and expression of the Xi have been revealed. Here, we review our current knowledge of the 3D organization of the mammalian X-chromosome chromatin and discuss its relationship with gene activity in light of the initiation, spreading, and maintenance of XCI, as well as escape from gene silencing.


Asunto(s)
Cromatina/genética , Regulación de la Expresión Génica/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Femenino , Silenciador del Gen , Humanos , Mamíferos , ARN Largo no Codificante/genética
4.
Nature ; 580(7801): 142-146, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238933

RESUMEN

Paternal and maternal epigenomes undergo marked changes after fertilization1. Recent epigenomic studies have revealed the unusual chromatin landscapes that are present in oocytes, sperm and early preimplantation embryos, including atypical patterns of histone modifications2-4 and differences in chromosome organization and accessibility, both in gametes5-8 and after fertilization5,8-10. However, these studies have led to very different conclusions: the global absence of local topological-associated domains (TADs) in gametes and their appearance in the embryo8,9 versus the pre-existence of TADs and loops in the zygote5,11. The questions of whether parental structures can be inherited in the newly formed embryo and how these structures might relate to allele-specific gene regulation remain open. Here we map genomic interactions for each parental genome (including the X chromosome), using an optimized single-cell high-throughput chromosome conformation capture (HiC) protocol12,13, during preimplantation in the mouse. We integrate chromosome organization with allelic expression states and chromatin marks, and reveal that higher-order chromatin structure after fertilization coincides with an allele-specific enrichment of methylation of histone H3 at lysine 27. These early parental-specific domains correlate with gene repression and participate in parentally biased gene expression-including in recently described, transiently imprinted loci14. We also find TADs that arise in a non-parental-specific manner during a second wave of genome assembly. These de novo domains are associated with active chromatin. Finally, we obtain insights into the relationship between TADs and gene expression by investigating structural changes to the paternal X chromosome before and during X chromosome inactivation in preimplantation female embryos15. We find that TADs are lost as genes become silenced on the paternal X chromosome but linger in regions that escape X chromosome inactivation. These findings demonstrate the complex dynamics of three-dimensional genome organization and gene expression during early development.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Cromatina/metabolismo , Desarrollo Embrionario/genética , Fertilización/genética , Células Germinativas/citología , Padres , Alelos , Animales , Cromatina/química , Cromatina/genética , Posicionamiento de Cromosoma , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Impresión Genómica , Células Germinativas/metabolismo , Histonas/química , Histonas/metabolismo , Masculino , Metilación , Ratones , Proteínas del Grupo Polycomb/metabolismo , Análisis de la Célula Individual , Inactivación del Cromosoma X/genética
5.
Mol Cell ; 70(3): 462-472.e8, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706539

RESUMEN

Accumulation of the Xist long noncoding RNA (lncRNA) on one X chromosome is the trigger for X chromosome inactivation (XCI) in female mammals. Xist expression, which needs to be tightly controlled, involves a cis-acting region, the X-inactivation center (Xic), containing many lncRNA genes that evolved concomitantly to Xist from protein-coding ancestors through pseudogeneization and loss of coding potential. Here, we uncover an essential role for the Xic-linked noncoding gene Ftx in the regulation of Xist expression. We show that Ftx is required in cis to promote Xist transcriptional activation and establishment of XCI. Importantly, we demonstrate that this function depends on Ftx transcription and not on the RNA products. Our findings illustrate the multiplicity of layers operating in the establishment of XCI and highlight the diversity in the modus operandi of the noncoding players.


Asunto(s)
ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Mamíferos/genética , Ratones , Transcripción Genética/genética
6.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502750

RESUMEN

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , Comunicación , Expresión Génica , Genoma , Ratones , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética
7.
Trends Genet ; 36(7): 459-461, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32544446

RESUMEN

How does the folding of the genome relate to the regulation of gene expression? Using fly embryos and quantitative live imaging, a recent study by Yokoshi et al. reveals that the answer might depend on whether enhancer-promoter communication occurs inside or in-between topological domains.


Asunto(s)
Comunicación , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas
8.
Development ; 147(19)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020073

RESUMEN

Developmental enhancers drive gene expression in specific cell types during animal development. They integrate signals from many different sources mediated through the binding of transcription factors, producing specific responses in gene expression. Transcription factors often bind low-affinity sequences for only short durations. How brief, low-affinity interactions drive efficient transcription and robust gene expression is a central question in developmental biology. Localized high concentrations of transcription factors have been suggested as a possible mechanism by which to use these enhancer sites effectively. Here, we discuss the evidence for such transcriptional microenvironments, mechanisms for their formation and the biological consequences of such sub-nuclear compartmentalization for developmental decisions and evolution.


Asunto(s)
Núcleo Celular/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Cells ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980312

RESUMEN

The authors wish to make the following changes to their paper [...].

11.
Dev Cell ; 58(1): 51-62.e4, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36626871

RESUMEN

Developmental enhancers bind transcription factors and dictate patterns of gene expression during development. Their molecular evolution can underlie phenotypical evolution, but the contributions of the evolutionary pathways involved remain little understood. Here, using mutation libraries in Drosophila melanogaster embryos, we observed that most point mutations in developmental enhancers led to changes in gene expression levels but rarely resulted in novel expression outside of the native pattern. In contrast, random sequences, often acting as developmental enhancers, drove expression across a range of cell types; random sequences including motifs for transcription factors with pioneer activity acted as enhancers even more frequently. Our findings suggest that the phenotypic landscapes of developmental enhancers are constrained by enhancer architecture and chromatin accessibility. We propose that the evolution of existing enhancers is limited in its capacity to generate novel phenotypes, whereas the activity of de novo elements is a primary source of phenotypic novelty.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Evolución Molecular , Fenotipo , Regulación del Desarrollo de la Expresión Génica
12.
Cells ; 11(3)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35159344

RESUMEN

Early in development, placental and marsupial mammals harbouring at least two X chromosomes per nucleus are faced with a choice that affects the rest of their lives: which of those X chromosomes to transcriptionally inactivate. This choice underlies phenotypical diversity in the composition of tissues and organs and in their response to the environment, and can determine whether an individual will be healthy or affected by an X-linked disease. Here, we review our current understanding of the process of choice during X-chromosome inactivation and its implications, focusing on the strategies evolved by different mammalian lineages and on the known and unknown molecular mechanisms and players involved.


Asunto(s)
Compensación de Dosificación (Genética) , Marsupiales , Animales , Femenino , Mamíferos/genética , Marsupiales/genética , Placenta , Embarazo , Cromosoma X/genética , Inactivación del Cromosoma X/genética
13.
Cell Rep ; 41(11): 111832, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516782

RESUMEN

How histone modifications affect animal development remains difficult to ascertain. Despite the prevalence of histone 3 lysine 4 monomethylation (H3K4me1) on enhancers, hypomethylation appears to have minor effects on phenotype and viability. Here, we genetically reduce H3K4me1 deposition in Drosophila melanogaster and find that hypomethylation reduces transcription factor enrichment in nuclear microenvironments, disrupts gene expression, and reduces phenotypic robustness. Using a developmental phenomics approach, we find changes in morphology, metabolism, behavior, and offspring production. However, many phenotypic changes are only detected when hypomethylated flies develop outside of standard laboratory environments or with specific genetic backgrounds. Therefore, quantitative phenomics measurements can unravel how pleiotropic modulators of gene expression affect developmental robustness under conditions resembling the natural environments of a species.


Asunto(s)
Drosophila melanogaster , Elementos de Facilitación Genéticos , Animales , Drosophila melanogaster/metabolismo , Fenómica , Histonas/metabolismo , Fenotipo
14.
J Vis Exp ; (188)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36314814

RESUMEN

The spatial organization of the genome contributes to its function and regulation in many contexts, including transcription, replication, recombination, and repair. Understanding the exact causality between genome topology and function is therefore crucial and increasingly the subject of intensive research. Chromosome conformation capture technologies (3C) allow inferring the 3D structure of chromatin by measuring the frequency of interactions between any region of the genome. Here we describe a fast and simple protocol to perform Capture Hi-C, a 3C-based target enrichment method that characterizes the allele-specific 3D organization of megabased-sized genomic targets at high-resolution. In Capture Hi-C, target regions are captured by an array of biotinylated probes before downstream high-throughput sequencing. Thus, higher resolution and allele-specificity are achieved while improving the time-effectiveness and affordability of the technology. To demonstrate its strengths, the Capture Hi-C protocol was applied to the mouse X-inactivation center (Xic), the master regulatory locus of X-chromosome inactivation (XCI).


Asunto(s)
Cromatina , Cromosomas , Ratones , Animales , Mapeo Cromosómico/métodos , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos
15.
Nat Genet ; 51(6): 1024-1034, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31133748

RESUMEN

The mouse X-inactivation center (Xic) locus represents a powerful model for understanding the links between genome architecture and gene regulation, with the non-coding genes Xist and Tsix showing opposite developmental expression patterns while being organized as an overlapping sense/antisense unit. The Xic is organized into two topologically associating domains (TADs) but the role of this architecture in orchestrating cis-regulatory information remains elusive. To explore this, we generated genomic inversions that swap the Xist/Tsix transcriptional unit and place their promoters in each other's TAD. We found that this led to a switch in their expression dynamics: Xist became precociously and ectopically upregulated, both in male and female pluripotent cells, while Tsix expression aberrantly persisted during differentiation. The topological partitioning of the Xic is thus critical to ensure proper developmental timing of X inactivation. Our study illustrates how the genomic architecture of cis-regulatory landscapes can affect the regulation of mammalian developmental processes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/genética , Inactivación del Cromosoma X , Animales , Diferenciación Celular/genética , Expresión Génica Ectópica , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Silenciador del Gen , Sitios Genéticos , Masculino , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas , Inversión de Secuencia , Transcripción Genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-29686034

RESUMEN

The packaging of genetic material into chromatin and chromosomes has been recognized for more than a century, thanks to microscopy and biochemical approaches. This was followed by the progressive realization that chromatin organization is critical for genome functions such as transcription and DNA replication and repair. The recent discovery that chromosomes are partitioned at the submegabase scale into topologically associating domains (TADs) has implications for our understanding of gene regulation during developmental processes such as X-chromosome inactivation, as well as for evolution and for the search for disease-associated loci. Here we discuss our current knowledge about this recently recognized level of mammalian chromosome organization, with a special emphasis on the potential role of TADs as a structural basis for the function and evolution of mammalian regulatory landscapes.

17.
Nat Commun ; 8(1): 1297, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101321

RESUMEN

X-chromosome inactivation is established during early development. In mice, transcriptional repression of the paternal X-chromosome (Xp) and enrichment in epigenetic marks such as H3K27me3 is achieved by the early blastocyst stage. X-chromosome inactivation is then reversed in the inner cell mass. The mechanisms underlying Xp reactivation remain enigmatic. Using in vivo single-cell approaches (allele-specific RNAseq, nascent RNA-fluorescent in situ hybridization and immunofluorescence), we show here that different genes are reactivated at different stages, with more slowly reactivated genes tending to be enriched in H3meK27. We further show that in UTX H3K27 histone demethylase mutant embryos, these genes are even more slowly reactivated, suggesting that these genes carry an epigenetic memory that may be actively lost. On the other hand, expression of rapidly reactivated genes may be driven by transcription factors. Thus, some X-linked genes have minimal epigenetic memory in the inner cell mass, whereas others may require active erasure of chromatin marks.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Epigénesis Genética , Factores de Transcripción/farmacocinética , Inactivación del Cromosoma X/genética , Animales , Femenino , Genes Ligados a X , Histonas/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Modelos Genéticos , Embarazo , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual
18.
Nat Struct Mol Biol ; 24(3): 226-233, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28134930

RESUMEN

The long noncoding RNA Xist is expressed from only the paternal X chromosome in mouse preimplantation female embryos and mediates transcriptional silencing of that chromosome. In females, absence of Xist leads to postimplantation lethality. Here, through single-cell RNA sequencing of early preimplantation mouse embryos, we found that the initiation of imprinted X-chromosome inactivation absolutely requires Xist. Lack of paternal Xist leads to genome-wide transcriptional misregulation in the early blastocyst and to failure to activate the extraembryonic pathway that is essential for postimplantation development. We also demonstrate that the expression dynamics of X-linked genes depends on the strain and parent of origin as well as on the location along the X chromosome, particularly at the first 'entry' sites of Xist. This study demonstrates that dosage-compensation failure has an effect as early as the blastocyst stage and reveals genetic and epigenetic contributions to orchestrating transcriptional silencing of the X chromosome during early embryogenesis.


Asunto(s)
Desarrollo Embrionario/genética , Impresión Genómica , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Alelos , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular/genética , Compensación de Dosificación (Genética) , Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Silenciador del Gen , Genes Ligados a X , Cinética , Masculino , Ratones Endogámicos C57BL , Mutación/genética , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Tiempo , Cromosoma X/genética
19.
Curr Opin Genet Dev ; 31: 57-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26004255

RESUMEN

X-chromosome inactivation (XCI) is a developmentally associated process that evolved in mammals to enable gene dosage compensation between XX and XY individuals. In placental mammals, it is triggered by the long noncoding RNA Xist, which is produced from a complex regulatory locus, the X-inactivation centre (Xic). Recent insights into the regulatory landscape of the Xic, including its partitioning into topological associating domains (TADs) and its genetic dissection, have important implications for the monoallelic regulation of Xist. Here, we present some of the latest studies on X inactivation with a special focus on the regulation of Xist, its various functions and the putative role of chromosome conformation in regulating the dynamics of this locus during development and differentiation.


Asunto(s)
Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Humanos , Transcripción Genética , Cromosoma X/química , Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA