Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 52(3): 1155, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36655545

RESUMEN

Correction for 'Propane to olefins tandem catalysis: a selective route towards light olefins production' by Matteo Monai et al., Chem. Soc. Rev., 2021, 50, 11503-11529, https://doi.org/10.1039/D1CS00357G.

2.
Chem Soc Rev ; 50(20): 11503-11529, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34661210

RESUMEN

On-purpose synthetic routes for propylene production have emerged in the last couple of decades in response to the increasing demand for plastics and a shift to shale gas feedstocks for ethylene production. Propane dehydrogenation (PDH), an efficient and selective route to produce propylene, saw booming investments to fill the so-called propylene gap. In the coming years, however, a fluctuating light olefins market will call for flexibility in end-product of PDH plants. This can be achieved by combining PDH with propylene metathesis in a single step, propane to olefins (PTO), which allows production of mixtures of propylene, ethylene and butenes, which are important chemical building blocks for a.o. thermoplastics. The metathesis technology introduced by Phillips in the 1960s and mostly operated in reverse to produce propylene, is thus undergoing a renaissance of scientific and technological interest in the context of the PTO reaction. In this review, we will describe the state-of-the-art of PDH, propylene metathesis and PTO reactions, highlighting the open challenges and opportunities in the field. While the separate PDH and metathesis reactions have been extensively studied in the literature, understanding the whole PTO tandem-catalysis system will require new efforts in theoretical modelling and operando spectroscopy experiments, to gain mechanistic insights into the combined reactions and finally improve catalytic selectivity and stability for on-purpose olefins production.

3.
Angew Chem Int Ed Engl ; 60(25): 13803-13806, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33725373

RESUMEN

Introducing hierarchical porosity to zeolites is vital for providing molecular access to microporous domains. Yet, the dynamics of meso- and macropore formation has remained elusive and pore space ill-characterized by a lack of (in situ) microscopic tools sensitive to nanoporosity. Here, we probe hierarchical porosity formation within a zeolite ZSM-5 crystal in real-time by in situ fluorescence microscopy during desilication. In addition, we introduce small-angle X-ray scattering microscopy as novel characterization tool to map intracrystal meso- and macropore properties. It is shown that hierarchical porosity formation initiates at the crystal surface and propagates to the crystal core via a pore front with decreasing rate. Also, hierarchical porosity only establishes in specific (segments of) subunits which constitute ZSM-5. Such space-dependent meso- and macroporosity implies local discrepancies in diffusion, performance and deactivation behaviors even within a zeolite crystal.

4.
Angew Chem Int Ed Engl ; 59(10): 3922-3927, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31889397

RESUMEN

Ni contamination from crude oil in the fluid catalytic cracking (FCC) process is one of the primary sources of catalyst deactivation, thereby promoting dehydrogenation-hydrogenation and speeding up coke growth. Herein, single-particle X-ray fluorescence, diffraction and absorption (µXRF-µXRD-µXAS) tomography is used in combination with confocal fluorescence microscopy (CFM) after thiophene staining to spatially resolve Ni interaction with catalyst components and study zeolite degradation, including the processes of dealumination and Brønsted acid sites distribution changes. The comparison between a Ni-lean particle, exposed to hydrotreated feedstock, and a Ni-rich one, exposed to non-hydrotreated feedstock, reveals a preferential interaction of Ni, found in co-localization with Fe, with the γ-Al2 O3 matrix, leading to the formation of spinel-type hotspots. Although both particles show similar surface zeolite degradation, the Ni-rich particle displays higher dealumination and a clear Brønsted acidity drop.

5.
J Chem Phys ; 147(14): 144702, 2017 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-29031272

RESUMEN

A combined experimental and theoretical study of Mg-doped LaGaO3 electrolyte was carried out, with the aim to unveil the interaction between oxygen vacancy (Vo) and perovskite B site cations. LaGaO3 (LG) and LaGa0.875Mg0.125O2.938 (LGM0125) samples were comprehensively characterized by X-ray absorption spectroscopy (XAS) and X-ray diffraction, in order to investigate short- and long-range structures of both undoped and Mg-doped materials. XAS analysis evidenced a preferential Ga-Vo interaction in LGM0125, confirmed by periodic hybrid density functional theory calculations, which were combined with a symmetry-independent classes (SICs) approach in order to (a) obtain a detailed picture of the different Mg and Vo configurations in the doped material and (b) characterize the structural features of the conducting sites. Among the 28 structures of LGM0125 considered in the SIC approach, the Ga-Vo-Ga and Ga-Vo-Mg axial configurations (oriented along the b crystallographic axis) were found to be the most stable. The relative stability of all vacancy configurations considered could be related to geometric distortions of the B-sites, possibly significantly affecting the oxygen-ion diffusion process in such electrolytes.

6.
ACS Appl Mater Interfaces ; 12(50): 55537-55553, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33263981

RESUMEN

The literature concerning protonic ceramic devices is critically reviewed focusing the reader's attention on the structure, composition, and phenomena taking place at solid-solid interfaces. These interfaces play a crucial role in the overall device performance, and the relevance of understanding the phenomena taking place at the interfaces for the further improvement of electrochemical protonic ceramic devices is therefore stressed. The grain boundaries and heterostructures in electrolytic membranes, the electrode-electrolyte contacts, and the interfaces within composite anode and cathode materials are all considered, with specific concern to advanced techniques of characterization and to computational modeling by ab initio approaches. An outlook about future developments and improvements highlights the necessity of a deeper insight into the advanced analysis of what happens at the solid-solid interfaces and of in situ/operando investigations that are presently sporadic in the literature on protonic ceramic devices.

7.
ACS Appl Mater Interfaces ; 9(51): 44466-44477, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29192487

RESUMEN

The chemical compatibility between electrolytes and electrodes is an extremely important aspect governing the overall impedance of solid-oxide cells. Because these devices work at elevated temperatures, they are especially prone to cation interdiffusion between the cell components, possibly resulting in secondary insulating phases. In this work, we applied X-ray microspectroscopy to study the interface between a samarium-doped ceria (SDC) electrolyte and lanthanum ferrite cathodes (La0.4Sr0.6Fe0.8Cu0.2O3 (LSFCu); La0.9Sr0.1Fe0.85Co0.15O3 (LSCF)), at a submicrometric level. This technique allows to combine the information about the diffusion profiles of cations on the scale of several micrometers, together with the chemical information coming from space-resolved X-ray absorption spectroscopy. In SDC-LSCF bilayers, we find that the prolonged thermal treatments at 1150 °C bring about the segregation of samarium and iron in micrometer-sized perovskite domains. In both SDC-LSCF and SDC-LSFCu bilayers, cerium diffuses into the cathode perovskite lattice A-site as a reduced Ce3+ cation, whereas La3+ is easily incorporated in the ceria lattice, reaching 30 atom % in the ceria layer in contact with LSFCu.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA