Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Mater ; 19(11): 1134-1135, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33082569
2.
Nat Commun ; 14(1): 681, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755035

RESUMEN

Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Humanos , Tolerancia Inmunológica , Autoantígenos , Ganglios Linfáticos/patología , Sirolimus
3.
Biomater Sci ; 10(16): 4612-4626, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35796247

RESUMEN

Recently approved cancer immunotherapies - including CAR-T cells and cancer vaccination, - show great promise. However, these technologies are hindered by the complexity and cost of isolating and engineering patient cells ex vivo. Lymph nodes (LNs) are key tissues that integrate immune signals to coordinate adaptive immunity. Directly controlling the signals and local environment in LNs could enable potent and safe immunotherapies without cell isolation, engineering, and reinfusion. Here we employ intra-LN (i.LN.) injection of immune signal-loaded biomaterial depots to directly control cancer vaccine deposition, revealing how the combination and geographic distribution of signals in and between LNs impact anti-tumor response. We show in healthy and diseased mice that relative proximity of antigen and adjuvant in LNs - and to tumors - defines unique local and systemic characteristics of innate and adaptive response. These factors ultimately control survival in mouse models of lymphoma and melanoma. Of note, with appropriate geographic signal distributions, a single i.LN. vaccine treatment confers near-complete survival to tumor challenge and re-challenge 100 days later, without additional treatments. These data inform design criteria for immunotherapies that leverage biomaterials for loco-regional LN therapy to generate responses that are systemic and specific, without systemically exposing patients to potent or immunotoxic drugs.


Asunto(s)
Vacunas contra el Cáncer , Melanoma , Animales , Señales (Psicología) , Ganglios Linfáticos , Melanoma/terapia , Ratones , Resultado del Tratamiento , Vacunación
4.
Drug Deliv Transl Res ; 11(6): 2468-2481, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34611846

RESUMEN

Autoimmune diseases-where the immune system mistakenly targets self-tissue-remain hindered by non-specific therapies. For example, even molecularly specific monoclonal antibodies fail to distinguish between healthy cells and self-reactive cells. An experimental therapeutic approach involves delivery of self-molecules targeted by autoimmunity, along with immune modulatory signals to produce regulatory T cells (TREG) that selectively stop attack of host tissue. Much has been done to increase the efficiency of signal delivery using biomaterials, including encapsulation in polymer microparticles (MPs) to allow for co-delivery and cargo protection. However, less research has compared particles encapsulating drugs that target different TREG inducing pathways. In this paper, we use poly (lactic-co-glycolide) (PLGA) to co-encapsulate type 1 diabetes (T1D)-relevant antigen and 3 distinct TREG-inducing molecules - rapamycin (Rapa), all-trans retinoic acid (atRA), and butyrate (Buty) - that target the mechanistic target of Rapa (mTOR), the retinoid pathway, and histone deacetylase (HDAC) inhibition, respectively. We show all formulations are effectively taken up by antigen presenting cells (APCs) and that antigen-containing formulations are able to induce proliferation in antigen-specific T cells. Further, atRA and Rapa MP formulations co-loaded with antigen decrease APC activation levels, induce TREG differentiation, and reduce inflammatory cytokines in pancreatic-reactive T cells.


Asunto(s)
Diabetes Mellitus Tipo 1 , Linfocitos T Reguladores , Materiales Biocompatibles , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Activación de Linfocitos , Transducción de Señal , Linfocitos T Reguladores/metabolismo
5.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932728

RESUMEN

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Asunto(s)
Adyuvantes Inmunológicos/química , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Melanoma Experimental/inmunología , Ratones , Nanopartículas , Medicina de Precisión , Primates , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , Vacunación , Vacunas Conjugadas
6.
Adv Healthc Mater ; 8(4): e1801419, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605264

RESUMEN

Autoimmune diseases, rejection of transplanted organs and grafts, chronic inflammatory diseases, and immune-mediated rejection of biologic drugs impact a large number of people across the globe. New understanding of immune function is revealing exciting opportunities to help tackle these challenges by harnessing-or correcting-the specificity of immune function. However, realizing this potential requires precision control over the interaction between regulatory immune cues, antigens attacked during inflammation, and the tissues where these processes occur. Engineered materials-such as polymeric and lipid particles, scaffolds, and inorganic materials-offer powerful features that can help to selectively regulate immune function during disease without compromising healthy immune functions. This review highlights some of the exciting developments to leverage biomaterials as carriers, depots, scaffolds-and even as agents with intrinsic immunomodulatory features-to promote immunological tolerance.


Asunto(s)
Enfermedades Autoinmunes , Materiales Biocompatibles/uso terapéutico , Bioingeniería , Tolerancia Inmunológica , Inmunoterapia , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/terapia , Humanos
7.
J Biomed Mater Res A ; 105(11): 2977-2985, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28646511

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease where myelin is incorrectly recognized as foreign and attacked by the adaptive immune system. Dendritic cells (DCs) direct adaptive immunity by presenting antigens to T cells, therefore serving as a target for autoimmune therapies. N-Phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide (PHCCC), a positive allosteric modulator of metabotropic glutamate receptor 4 (mGluR4), can promote regulatory T cells by altering cytokine secretion to bias T cell differentiation. The therapeutic potential of PHCCC, however, is hindered by dose-limiting toxicity, poor solubility, and the need for frequent dosing. We hypothesized liposomal delivery of PHCCC might enable safe, effective delivery of this hydrophobic drug to exploit metabolism as a means of controlling inflammation in self-reactive immune cells. PHCCC was readily encapsulated in liposomes modified with polyethylene glycol. Under sink conditions, controlled release resulted in 58% of drug released into media over 18 hours. Culture of primary DCs with PHCCC liposomes reduced pro-inflammatory cytokine secretion while reducing toxicity four-fold compared with soluble PHCCC. During co-culture of DCs with myelin-reactive T cells from transgenic mice, PHCCC liposomes reduced T cell proliferation and interferon gamma secretion. These results support the potential of using liposomes to promote tolerance through biocompatible delivery of metabolic modulators. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2977-2985, 2017.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Benzopiranos/administración & dosificación , Benzopiranos/farmacología , Inflamación/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/inmunología , Linfocitos T/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Preparaciones de Acción Retardada/química , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Femenino , Inflamación/inmunología , Liposomas/química , Ratones Endogámicos C57BL , Ratones Transgénicos , Linfocitos T/inmunología
8.
ACS Biomater Sci Eng ; 3(2): 195-205, 2017 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-28286864

RESUMEN

Microneedles (MNs) are micron-scale polymeric or metallic structures that offer distinct advantages for vaccines by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. These advantages, along with recent studies showing therapeutic benefits achieved using traditional intradermal injections in human cancer patients, suggest MN delivery might enhance cancer vaccines and immunotherapies. We recently developed a new class of polyelectrolyte multilayers based on the self-assembly of model peptide antigens and molecular toll-like receptor agonists (TLRa) into ultrathin, conformal coatings. Here, we reasoned that these immune polyelectrolyte multilayers (iPEMs) might be a useful platform for assembling cancer vaccine components on MN arrays for intradermal delivery from these substrates. Using conserved human melanoma antigens and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be assembled on MNs in an automated fashion. These films, prepared with up to 128 layers, are approximately 200 nm thick but provide cancer vaccine cargo loading >225 µg/cm2. In cell culture, iPEM cargo released from MNs is internalized by primary dendritic cells, promotes activation of these cells, and expands T cells during coculture. In mice, application of iPEM-coated MNs results in the codelivery of tumor antigen and CpG through the skin, expanding tumor-specific T cells during initial MN applications and resulting in larger memory recall responses during a subsequent booster MN application. This study support MNs coated with PEMs built from tumor vaccine components as a well-defined, modular system for generating tumor-specific immune responses, enabling new approaches that can be explored in combination with checkpoint blockade or other combination cancer therapies.

9.
J Control Release ; 263: 151-161, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28257991

RESUMEN

An important goal for improving vaccine and immunotherapy technologies is the ability to provide further control over the specific phenotypes of T cells arising from these agents. Along these lines, frequent administration of rapamycin (Rapa), a small molecule inhibitor of the mammalian target of rapamycin (mTOR), exhibits a striking ability to polarize T cells toward central memory phenotypes (TCM), or to suppress immune function, depending on the concentrations and other signals present during administration. TCM exhibit greater plasticity and proliferative capacity than effector memory T cells (TEFF) and, therefore, polarizing vaccine-induced T cells toward TCM is an intriguing strategy to enhance T cell expansion and function against pathogens or tumors. Here we combined biodegradable microparticles encapsulating Rapa (Rapa MPs) with vaccines composed of soluble peptide antigens and molecular adjuvants to test if this approach allows polarization of differentiating T cells toward TCM. We show Rapa MPs modulate DC function, enhancing secretion of inflammatory cytokines at very low doses, and suppressing function at high doses. While Rapa MP treatment reduced - but did not stop - T cell proliferation in both CD4+ and CD8+ transgenic T cell co-cultures, the expanding CD8+ T cells differentiated to higher frequencies of TCM at low doses of MP Rapa MPs. Lastly, we show in mice that local delivery of Rapa MPs to lymph nodes during vaccination either suppresses or enhances T cell function in response to melanoma antigens, depending on the dose of drug in the depots. In particular, at low Rapa MP doses, vaccines increased antigen-specific TCM, resulting in enhanced T cell expansion measured during subsequent booster injections over at least 100days.


Asunto(s)
Sirolimus/administración & dosificación , Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Antígenos/administración & dosificación , Línea Celular Tumoral , Plasticidad de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Citocinas/metabolismo , Preparaciones de Acción Retardada/administración & dosificación , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Proteínas de la Membrana/administración & dosificación , Ratones Endogámicos C57BL , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito , Ovalbúmina/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Vacunas/administración & dosificación
10.
Oncotarget ; 7(13): 15421-43, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26871948

RESUMEN

Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials - such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices - offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients.


Asunto(s)
Materiales Biocompatibles/farmacología , Inmunoterapia/métodos , Inmunoterapia/tendencias , Neoplasias/terapia , Animales , Humanos , Inmunoterapia/instrumentación , Nanotecnología/métodos , Nanotecnología/tendencias
11.
ACS Appl Mater Interfaces ; 8(29): 18722-31, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27380137

RESUMEN

While biomaterials provide a platform to control the delivery of vaccines, the recently discovered intrinsic inflammatory characteristics of many polymeric carriers can also complicate rational design because the carrier itself can alter the response to other vaccine components. To address this challenge, we recently developed immune-polyelectrolyte multilayer (iPEMs) capsules electrostatically assembled entirely from peptide antigen and molecular adjuvants. Here, we use iPEMs built from SIINFEKL model antigen and polyIC, a stimulatory toll-like receptor agonist, to investigate the impact of pH on iPEM assembly, the processing and interactions of each iPEM component with primary immune cells, and the role of these interactions during antigen-specific T cell responses in coculture and mice. We discovered that iPEM assembly is pH dependent with respect to both the antigen and adjuvant component. Controlling the pH also allows tuning of the relative loading of SIINFEKL and polyIC in iPEM capsules. During in vitro studies with primary dendritic cells (DCs), iPEM capsules ensure that greater than 95% of cells containing at least one signal (i.e., antigen, adjuvant) also contained the other signal. This codelivery leads to DC maturation and SIINFEKL presentation via the MHC-I antigen presentation pathway, resulting in antigen-specific T cell proliferation and pro-inflammatory cytokine secretion. In mice, iPEM capsules potently expand antigen-specific T cells compared with equivalent admixed formulations. Of note, these enhancements become more pronounced with successive booster injections, suggesting that iPEMs functionally improve memory recall response. Together our results reveal some of the features that can be tuned to modulate the properties of iPEM capsules, and how these modular vaccine structures can be used to enhance interactions with immune cells in vitro and in mice.


Asunto(s)
Polielectrolitos/química , Adyuvantes Inmunológicos , Animales , Antígenos , Células Dendríticas , Ratones , Vacunas
12.
Cell Mol Bioeng ; 9: 418-432, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547269

RESUMEN

Biomaterial vaccines offer cargo protection, targeting, and co-delivery of signals to immune organs such as lymph nodes (LNs), tissues that coordinate adaptive immunity. Understanding how individual vaccine components impact immune response has been difficult owing to the systemic nature of delivery. Direct intra-lymph node (i.LN.) injection offers a unique opportunity to dissect how the doses, kinetics, and combinations of signals reaching LNs influence the LN environment. Here, i.LN. injection was used as a tool to study the local and systemic responses to vaccines comprised of soluble antigen and degradable polymer particles encapsulating toll-like receptor agonists as adjuvants. Microparticle vaccines increased antigen presenting cells and lymphocytes in LNs, enhancing activation of these cells. Enumeration of antigen-specific CD8+ T cells in blood revealed expansion over 7 days, followed by a contraction period over 1 month as memory developed. Extending this strategy to conserved mouse and human tumor antigens resulted in tumor antigen-specific primary and recall responses by CD8+ T cells. During challenge with an aggressive metastatic melanoma model, i.LN. delivery of depots slowed tumor growth more than a potent human vaccine adjuvant, demonstrating local treatment of a target immunological site can promote responses that are potent, systemic, and antigen-specific.

13.
Cell Rep ; 16(11): 2940-2952, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27626664

RESUMEN

Many experimental therapies for autoimmune diseases, such as multiple sclerosis (MS), aim to bias T cells toward tolerogenic phenotypes without broad suppression. However, the link between local signal integration in lymph nodes (LNs) and the specificity of systemic tolerance is not well understood. We used intra-LN injection of polymer particles to study tolerance as a function of signals in the LN microenvironment. In a mouse MS model, intra-LN introduction of encapsulated myelin self-antigen and a regulatory signal (rapamycin) permanently reversed paralysis after one treatment during peak disease. Therapeutic effects were myelin specific, required antigen encapsulation, and were less potent without rapamycin. This efficacy was accompanied by local LN reorganization, reduced inflammation, systemic expansion of regulatory T cells, and reduced T cell infiltration to the CNS. Our findings suggest that local control over signaling in distinct LNs can promote cell types and functions that drive tolerance that is systemic but antigen specific.


Asunto(s)
Microambiente Celular , Epítopos/inmunología , Tolerancia Inmunológica , Ganglios Linfáticos/patología , Animales , Autoantígenos/inmunología , Autoinmunidad/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Tolerancia Inmunológica/efectos de los fármacos , Inflamación/patología , Inyecciones , Ganglios Linfáticos/efectos de los fármacos , Ratones Endogámicos C57BL , Microesferas , Vaina de Mielina , Glicoproteína Mielina-Oligodendrócito , Fenotipo , Polímeros , Sirolimus/farmacología
14.
ACS Biomater Sci Eng ; 1(12): 1200-1205, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26689147

RESUMEN

New vaccine adjuvants that direct immune cells toward specific fates could support more potent and selective options for diseases spanning infection to cancer. However, the empirical nature of vaccines and the complexity of many formulations has hindered design of well-defined and easily characterized vaccines. We hypothesized that nanostructured capsules assembled entirely from polyionic immune signals might support a platform for simple, modular vaccines. These immune-polyelectrolyte (iPEM) capsules offer a high signal density, selectively expand T cells in mice, and drive functional responses during tumor challenge. iPEMs incorporating clinically relevant antigens could improve vaccine definition and support more programmable control over immunity.

15.
J Control Release ; 210: 169-78, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26002150

RESUMEN

Autoimmune disorders occur when the immune system abnormally recognizes and attacks self-molecules. Dendritic cells (DCs) play a powerful role in initiating adaptive immune response, and are therefore a recent target for autoimmune therapies. N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC), a small molecule glutamate receptor enhancer, alters how DCs metabolize glutamate, skewing cytokine secretion to bias T cell function. These effects provide protection in mouse models of multiple sclerosis (MS) by polarizing T cells away from inflammatory TH17 cells and toward regulatory T cells (TREG) when mice receive daily systemic injections of PHCCC. However, frequent, continued treatment is required to generate and maintain therapeutic benefits. Thus, the use of PHCCC is limited by poor solubility, the need for frequent dosing, and cell toxicity. We hypothesized that controlled release of PHCCC from degradable nanoparticles (NPs) might address these challenges by altering DC function to maintain efficacy with reduced treatment frequency and toxicity. This idea could serve as a new strategy for harnessing biomaterials to polarize immune function through controlled delivery of metabolic modulators. PHCCC was readily encapsulated in nanoparticles, with controlled release of 89% of drug into media over three days. Culture of primary DCs or DC and T cell co-cultures with PHCCC NPs reduced DC activation and secretion of pro-inflammatory cytokines, while shifting T cells away from TH17 and toward TREG phenotypes. Importantly, PHCCC delivered to cells in NPs was 36-fold less toxic compared with soluble PHCCC. Treatment of mice with PHCCC NPs every three days delayed disease onset and decreased disease severity compared with mice treated with soluble drug at the same dose and frequency. These results highlight the potential to promote tolerance through controlled delivery of metabolic modulators that alter DC signaling to polarize T cells, and suggest future gains that could be realized by engineering materials that provide longer term release.


Asunto(s)
Benzopiranos/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Nanopartículas/administración & dosificación , Animales , Presentación de Antígeno/efectos de los fármacos , Autoinmunidad , Benzopiranos/química , Benzopiranos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Citocinas/inmunología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/uso terapéutico , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ácido Láctico/química , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Nanopartículas/química , Nanopartículas/uso terapéutico , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Bazo/citología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA