Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(12): 2899-2916, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734987

RESUMEN

Low-level proprioceptive judgements involve a single frame of reference, whereas high-level proprioceptive judgements are made across different frames of reference. The present study systematically compared low-level (grasp → $\rightarrow$ grasp) and high-level (vision → $\rightarrow$ grasp, grasp → $\rightarrow$ vision) proprioceptive tasks, and quantified the consistency of grasp → $\rightarrow$ vision and possible reciprocal nature of related high-level proprioceptive tasks. Experiment 1 (n = 30) compared performance across vision → $\rightarrow$ grasp, a grasp → $\rightarrow$ vision and a grasp → $\rightarrow$ grasp tasks. Experiment 2 (n = 30) compared performance on the grasp → $\rightarrow$ vision task between hands and over time. Participants were accurate (mean absolute error 0.27 cm [0.20 to 0.34]; mean [95% CI]) and precise ( R 2 $R^2$ = 0.95 [0.93 to 0.96]) for grasp → $\rightarrow$ grasp judgements, with a strong correlation between outcomes (r = -0.85 [-0.93 to -0.70]). Accuracy and precision decreased in the two high-level tasks ( R 2 $R^2$ = 0.86 and 0.89; mean absolute error = 1.34 and 1.41 cm), with most participants overestimating perceived width for the vision → $\rightarrow$ grasp task and underestimating it for grasp → $\rightarrow$ vision task. There was minimal correlation between accuracy and precision for these two tasks. Converging evidence indicated performance was largely reciprocal (inverse) between the vision → $\rightarrow$ grasp and grasp → $\rightarrow$ vision tasks. Performance on the grasp → $\rightarrow$ vision task was consistent between dominant and non-dominant hands, and across repeated sessions a day or week apart. Overall, there are fundamental differences between low- and high-level proprioceptive judgements that reflect fundamental differences in the cortical processes that underpin these perceptions. Moreover, the central transformations that govern high-level proprioceptive judgements of grasp are personalised, stable and reciprocal for reciprocal tasks. KEY POINTS: Low-level proprioceptive judgements involve a single frame of reference (e.g. indicating the width of a grasped object by selecting from a series of objects of different width), whereas high-level proprioceptive judgements are made across different frames of reference (e.g. indicating the width of a grasped object by selecting from a series of visible lines of different length). We highlight fundamental differences in the precision and accuracy of low- and high-level proprioceptive judgements. We provide converging evidence that the neural transformations between frames of reference that govern high-level proprioceptive judgements of grasp are personalised, stable and reciprocal for reciprocal tasks. This stability is likely key to precise judgements and accurate predictions in high-level proprioception.


Asunto(s)
Fuerza de la Mano , Juicio , Propiocepción , Humanos , Propiocepción/fisiología , Masculino , Femenino , Adulto , Juicio/fisiología , Fuerza de la Mano/fisiología , Adulto Joven , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Mano/fisiología
2.
J Physiol ; 601(12): 2251-2262, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36271625

RESUMEN

Profiling performance in the physiological domains underpinning upper limb function (such as strength, sensation, coordination) provides insight into an individual's specific impairments. This compliments the traditional medical 'diagnosis' model that is currently used in contemporary medicine. From an initial battery of 13 tests in which data were collected across the adult lifespan (n = 367, 20-95 years) and in those with neurological conditions (specifically, multiple sclerosis (n = 40), Parkinson's disease (n = 34), and stroke (n = 50)), six tests were selected to comprise a core upper limb physiological profile assessment (PPA). This comprised measures of handgrip strength, simple reaction time, finger dexterity, tactile sensation, bimanual coordination, and a functional task. Individual performance in each of these tests can be compared to a reference population score (devised from our database of healthy individuals aged under 60 years), informing the researcher or clinician how to best direct an intervention or treatment for the individual based on their specific impairment(s). Lastly, a composite score calculated from the average performance across the six tests provides a broad overview of an individual's overall upper limb function. Collectively, the upper limb PPA highlights specific impairments that are prevalent within distinct pathologies and reveals the magnitude of upper limb motor impairment specific to each condition.


Asunto(s)
Trastornos Motores , Accidente Cerebrovascular , Adulto , Humanos , Anciano , Dedos , Fuerza de la Mano , Destreza Motora/fisiología , Envejecimiento/fisiología , Extremidad Superior
3.
J Physiol ; 601(24): 5795-5811, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37983193

RESUMEN

Inspiratory tongue dilatory movement is believed to be mediated via changes in neural drive to genioglossus. However, this has not been studied during quiet breathing in humans. Therefore, this study investigated this relationship and its potential role in obstructive sleep apnoea (OSA). During awake supine quiet nasal breathing, inspiratory tongue dilatory movement, quantified with tagged magnetic resonance imaging, and inspiratory phasic genioglossus EMG normalised to maximum EMG were measured in nine controls [apnoea-hypopnea index (AHI) ≤5 events/h] and 37 people with untreated OSA (AHI >5 events/h). Measurements were obtained for 156 neuromuscular compartments (85%). Analysis was adjusted for nadir epiglottic pressure during inspiration. Only for 106 compartments (68%) was a larger anterior (dilatory) movement associated with a higher phasic EMG [mixed linear regression, beta = 0.089, 95% CI [0.000, 0.178], t(99) = 1.995, P = 0.049, hereafter EMG↗/mvt↗]. For the remaining 50 (32%) compartments, a larger dilatory movement was associated with a lower phasic EMG [mixed linear regression, beta = -0.123, 95% CI [-0.224, -0.022], t(43) = -2.458, P = 0.018, hereafter EMG↘/mvt↗]. OSA participants had a higher odds of having at least one decoupled EMG↘/mvt↗ compartment (binary logistic regression, odds ratio [95% CI]: 7.53 [1.19, 47.47] (P = 0.032). Dilatory tongue movement was minimal (>1 mm) in nearly all participants with only EMG↗/mvt↗ compartments (86%, 18/21). These results demonstrate that upper airway dilatory mechanics cannot be predicted from genioglossus EMG, particularly in people with OSA. Tongue movement associated with minimal genioglossus activity suggests co-activation of other airway dilator muscles. KEY POINTS: Inspiratory tongue movement is thought to be mediated through changes in genioglossus activity. However, it is unknown if this relationship is altered by obstructive sleep apnoea (OSA). During awake supine quiet nasal breathing, inspiratory tongue movement, quantified with tagged magnetic resonance imaging (MRI), and inspiratory phasic genioglossus EMG normalised to maximum EMG were measured in four tongue compartments of people with and without OSA. Larger tongue anterior (dilatory) movement was associated with higher phasic genioglossus EMG for 68% of compartments. OSA participants had an ∼7-times higher odds of having at least one compartment for which a larger anterior tongue movement was not associated with a higher phasic EMG than controls. Therefore, higher genioglossus phasic EMG does not consistently translate into tongue dilatory movement, particularly in people with OSA. Large dilatory tongue movements can occur despite minimal genioglossus inspiratory activity, suggesting co-activation of other pharyngeal muscles.


Asunto(s)
Apnea Obstructiva del Sueño , Vigilia , Humanos , Vigilia/fisiología , Músculos Faríngeos , Movimiento/fisiología , Lengua , Electromiografía
4.
J Neurosci Res ; 101(2): 263-277, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36353842

RESUMEN

Substantia nigra (SN) hyperechogenicity, viewed with transcranial ultrasound, is a risk marker for Parkinson's disease. We hypothesized that SN hyperechogenicity in healthy adults aged 50-70 years is associated with reduced short-interval intracortical inhibition in primary motor cortex, and that the reduced intracortical inhibition is associated with neurochemical markers of activity in the pre-supplementary motor area (pre-SMA). Short-interval intracortical inhibition and intracortical facilitation in primary motor cortex was assessed with paired-pulse transcranial magnetic stimulation in 23 healthy adults with normal (n = 14; 61 ± 7 yrs) or abnormally enlarged (hyperechogenic; n = 9; 60 ± 6 yrs) area of SN echogenicity. Thirteen of these participants (7 SN- and 6 SN+) also underwent brain magnetic resonance spectroscopy to investigate pre-SMA neurochemistry. There was no relationship between area of SN echogenicity and short-interval intracortical inhibition in the ipsilateral primary motor cortex. There was a significant positive relationship, however, between area of echogenicity in the right SN and the magnitude of intracortical facilitation in the right (ipsilateral) primary motor cortex (p = .005; multivariate regression), evidenced by the amplitude of the conditioned motor evoked potential (MEP) at the 10-12 ms interstimulus interval. This relationship was not present on the left side. Pre-SMA glutamate did not predict primary motor cortex inhibition or facilitation. The results suggest that SN hyperechogenicity in healthy older adults may be associated with changes in excitability of motor cortical circuitry. The results advance understanding of brain changes in healthy older adults at risk of Parkinson's disease.


Asunto(s)
Excitabilidad Cortical , Corteza Motora , Enfermedad de Parkinson , Humanos , Anciano , Corteza Motora/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen
5.
Spinal Cord ; 61(9): 505-512, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37587377

RESUMEN

STUDY DESIGN: Secondary analysis of a randomised controlled trial. OBJECTIVES: Our primary study showed that increasing inspiratory muscle strength with training in people with chronic (>1 year) tetraplegia corresponded with reduced sensations of breathlessness when inspiration was loaded. This study investigated whether respiratory muscle training also affected the respiratory sensations for load detection and magnitude perception. SETTING: Independent research institute in Sydney, Australia. METHODS: Thirty-two adults with chronic tetraplegia participated in a 6-week, supervised training protocol. The active group trained the inspiratory muscles through progressive threshold loading. The sham group performed the same protocol with a fixed threshold load (3.6 cmH2O). Primary measures were load detection threshold and perceived magnitudes of six suprathreshold loads reported using the modified Borg scale. RESULTS: Maximal inspiratory pressure (PImax) increased by 32% (95% CI, 18-45) in the active group with no change in the sham group (p =  0.51). The training intervention did not affect detection thresholds in the active (p =  0.24) or sham (p =  0.77) group, with similar overall decreases in Borg rating of 0.83 (95% CI, 0.49-1.17) in active and 0.72 (95% CI, 0.32-1.12) in sham group. Increased inspiratory muscle strength reduced slope magnitude between Borg rating and peak inspiratory pressure (p =  0.003), but not when pressure was divided by PImax to reflect contraction intensity (p =  0.92). CONCLUSIONS: Training reduces the sensitivity of load sensations for a given change in pressure but not for a given change in contraction intensity.


Asunto(s)
Traumatismos de la Médula Espinal , Adulto , Humanos , Traumatismos de la Médula Espinal/complicaciones , Ejercicios Respiratorios , Academias e Institutos , Cuadriplejía , Sensación
6.
J Physiol ; 600(24): 5203-5214, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36326193

RESUMEN

Neural drive originating in higher brain areas reaches exercising limb muscles through the corticospinal-motoneuronal pathway, which links the motor cortex and spinal motoneurones. The properties of this pathway have frequently been observed to change during fatiguing exercise in ways that could influence the development of central fatigue (i.e. the progressive reduction in voluntary muscle activation). However, based on differences in motor cortical and motoneuronal excitability between exercise modalities (e.g. single-joint vs. locomotor exercise), there is no characteristic response that allows for a categorical conclusion about the effect of these changes on functional impairments and performance limitations. Despite the lack of uniformity in findings during fatigue, there is strong evidence for marked 'inhibition' of motoneurones as a direct result of voluntary drive. Endogenous forms of neuromodulation, such as via serotonin released from neurones, can directly affect motoneuronal output and central fatigue. Exogenous forms of neuromodulation, such as brain stimulation, may achieve a similar effect, although the evidence is weak. Non-invasive transcranial direct current stimulation can cause transient or long-lasting changes in cortical excitability; however, variable results across studies cast doubt on its claimed capacity to enhance performance. Furthermore, with these studies, it is difficult to establish a cause-and-effect relationship between brain responsiveness and exercise performance. This review briefly summarizes changes in the corticomotoneuronal pathway during various types of exercise, and considers the relevance of these changes for the development of central fatigue, as well as the potential of non-invasive brain stimulation to enhance motor cortical excitability, motoneuronal output and, ultimately, exercise performance.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Corteza Motora/fisiología , Fatiga , Estimulación Magnética Transcraneal , Potenciales Evocados Motores/fisiología , Electromiografía , Estimulación Eléctrica , Contracción Muscular/fisiología
7.
Exp Physiol ; 107(6): 615-630, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35338753

RESUMEN

NEW FINDINGS: What is the central question of this study? Does a single session of repeated bouts of acute intermittent hypoxic breathing enhance the motoneuronal output of the limb muscles of healthy able-bodied participants? What is the main finding and its importance? Compared to breathing room air, there were some increases in motoneuronal output following acute intermittent hypoxia, but the increases were variable across participants and in time after the intervention and depended on which neurophysiological measure was checked. ABSTRACT: Acute intermittent hypoxia (AIH) induces persistent increases in output from rat phrenic motoneurones. Studies in people with spinal cord injury (SCI) suggest that AIH improves limb performance, perhaps via postsynaptic changes at cortico-motoneuronal synapses. We assessed whether limb motoneurone output in response to reflex and descending synaptic activation is facilitated after one session of AIH in healthy able-bodied volunteers. Fourteen participants completed two experimental days, with either AIH or a sham intervention (randomised crossover design). We measured H-reflex recruitment curves and homosynaptic post-activation depression (HPAD) of the H-reflex in soleus, and motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) and their recruitment curves in first dorsal interosseous. All measurements were performed at rest and occurred at baseline, 0, 20, 40 and 60 min post-intervention. The intervention was 30 min of either normoxia (sham, F i O 2 ${F_{{\rm{i}}{{\rm{O}}_{\rm{2}}}}}$  ≈ 0.21) or AIH (alternate 1-min hypoxia [ F i O 2 ${F_{{\rm{i}}{{\rm{O}}_{\rm{2}}}}}$  ≈ 0.09], 1-min normoxia). After AIH, the H-reflex recruitment curve shifted leftward. Lower stimulation intensities were needed to evoke 5%, 50% and 99% of the maximal H-reflex at 40 and 60 min after AIH (P < 0.04). The maximal H-reflex, recruitment slope and HPAD were unchanged after AIH. MEPs evoked by constant intensity TMS were larger 40 min after AIH (P = 0.027). There was no change in MEP recruitment or the maximal MEP. In conclusion, some measures of the evoked responses from limb motoneurones increased after a single AIH session, but only at discrete time points. It is unclear to what extent these changes alter functional performance.


Asunto(s)
Neuronas Motoras , Traumatismos de la Médula Espinal , Animales , Potenciales Evocados Motores , Humanos , Hipoxia , Neuronas Motoras/fisiología , Ratas , Estimulación Magnética Transcraneal
8.
Spinal Cord ; 60(6): 491-497, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35013547

RESUMEN

STUDY DESIGN: An international multi-centred, double-blinded, randomised sham-controlled trial (eWALK). OBJECTIVE: To determine the effect of 12 weeks of transcutaneous spinal stimulation (TSS) combined with locomotor training on walking ability in people with spinal cord injury (SCI). SETTING: Dedicated SCI research centres in Australia, Spain, USA and Scotland. METHODS: Fifty community-dwelling individuals with chronic SCI will be recruited. Participants will be eligible if they have bilateral motor levels between T1 and T11, a reproducible lower limb muscle contraction in at least one muscle group, and a Walking Index for SCI II (WISCI II) between 1 and 6. Eligible participants will be randomised to one of two groups, either the active stimulation group or the sham stimulation group. Participants allocated to the stimulation group will receive TSS combined with locomotor training for three 30-min sessions a week for 12 weeks. The locomotor sessions will include walking on a treadmill and overground. Participants allocated to the sham stimulation group will receive the same locomotor training combined with sham stimulation. The primary outcome will be walking ability with stimulation using the WISCI II. Secondary outcomes will record sensation, strength, spasticity, bowel function and quality of life. TRIAL REGISTRATION: ANZCTR.org.au identifier ACTRN12620001241921.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Modalidades de Fisioterapia , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Traumatismos de la Médula Espinal/complicaciones , Caminata/fisiología
9.
J Physiol ; 598(3): 567-580, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782971

RESUMEN

KEY POINTS: Impaired pharyngeal anatomy and increased airway collapsibility is a major cause of obstructive sleep apnoea (OSA) and a mediator of its severity. Upper airway reflexes to changes in airway pressure provide important protection against airway closure. This study shows increased pharyngeal collapsibility and attenuated genioglossus reflex responses during expiration in people with OSA. ABSTRACT: Upper airway collapse contributes to obstructive sleep apnoea (OSA) pathogenesis. Pharyngeal dilator muscle activity varies throughout the respiratory cycle and may contribute to dynamic changes in pharyngeal collapsibility. However, whether upper airway collapsibility and reflex responses to changes in airway pressure vary throughout the respiratory cycle in OSA is unclear. Thus, this study quantified differences in upper airway collapsibility and genioglossus electromyographic (EMG) activity and reflex responses during different phases of the respiratory cycle. Twelve middle-aged people with OSA (2 female) were fitted with standard polysomnography equipment: a nasal mask, pneumotachograph, two fine-wire intramuscular electrodes into the genioglossus, and a pressure catheter positioned at the epiglottis and a second at the choanae (the collapsible portion of the upper airway). At least 20 brief (∼250 ms) pressure pulses (∼-11 cmH2 O at the mask) were delivered every 2-10 breaths during four conditions: (1) early inspiration, (2) mid-inspiration, (3) early expiration, and (4) mid-expiration. Mean baseline genioglossus EMG activity 100 ms prior to pulse delivery and genioglossus reflex responses were quantified for each condition. The upper airway collapsibility index (UACI), quantified as 100 × (nadir choanal - epiglottic pressure)/nadir choanal pressure during negative pressure pulses, varied throughout the respiratory cycle (early inspiration = 43 ± 25%, mid-inspiration = 29 ± 19%, early expiration = 83 ± 19% and mid-expiration = 95 ± 11% (mean ± SD) P < 0.01). Genioglossus EMG activity was lower during expiration (e.g. mid-expiration vs. mid-inspiration = 76 ± 23 vs. 127 ± 41% of early-inspiration, P < 0.001). Similarly, genioglossus reflex excitation was delayed (39 ± 11 vs. 23 ± 7 ms, P < 0.001) and reflex excitation amplitude attenuated during mid-expiration versus early inspiration (209 ± 36 vs. 286 ± 80%, P = 0.009). These findings may provide insight into the physiological mechanisms of pharyngeal collapse in OSA.


Asunto(s)
Apnea Obstructiva del Sueño , Anciano , Electromiografía , Femenino , Humanos , Persona de Mediana Edad , Músculos Faríngeos , Faringe , Polisomnografía , Reflejo , Sueño
10.
J Physiol ; 598(24): 5789-5805, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32990956

RESUMEN

KEY POINTS: Respiration plays a key role in the circulation of cerebrospinal fluid (CSF) around the central nervous system. During inspiration increased venous return from the cranium is believed to draw CSF rostrally. However, this mechanism does not explain why CSF has also been observed to move caudally during inspiration. We show that during inspiration decreased intrathoracic pressure draws venous blood from the cranium and lumbar spine towards the thorax. We also show that the abdominal pressure was associated with rostral CSF displacement. However, a caudal shift of cervical CSF was seen with low abdominal pressure and comparably negative intrathoracic pressures. These results suggest that the effects of epidural blood flow within the spinal canal need to be considered, as well as the cranial blood volume balance, to understand respiratory-related CSF flow. These results may prove useful for the treatment of CSF obstructive pathology and understanding the behaviour of intrathecal drug injections. ABSTRACT: It is accepted that during inspiration, cerebrospinal fluid (CSF) flows rostrally to compensate for decreased cranial blood volume, caused by venous drainage due to negative intrathoracic pressure. However, this mechanism does not explain observations of caudal CSF displacement during inspiration. Determining the drivers of respiratory CSF flow is crucial for understanding the pathophysiology of CSF flow disorders. To quantify the influence of respiration on CSF flow, real-time phase-contrast magnetic resonance imaging (MRI) was used to record CSF and blood flow, while healthy subjects (5:5 M:F, 25-50 years) performed either a brief expiratory or inspiratory effort between breaths. Transverse images were taken perpendicular to the spinal canal in the middle of the C3 and L2 vertebrae. The same manoeuvres were then performed after a nasogastric pressure catheter was used to measure the intrathoracic and abdominal pressures. During expiratory-type manoeuvres that elevated abdominal and intrathoracic pressures, epidural blood flow into the spinal canal increased and CSF was displaced rostrally. With inspiratory manoeuvres, the negative intrathoracic pressure drew venous blood from C3 and L2 towards the thoracic spinal canal, and cervical CSF was displaced both rostrally and caudally, despite the increased venous drainage. Regression analysis showed that rostral displacement of CSF at both C3 (adjusted R2  = 0.53; P < 0.001) and L2 (adjusted R2  = 0.38; P < 0.001) were associated with the abdominal pressure. However, with low abdominal pressure and comparably negative intrathoracic pressure, cervical CSF flowed caudally. These findings suggest that changes in both the cranial and spinal pressures need to be considered to understand respiratory CSF flow.


Asunto(s)
Imagen por Resonancia Magnética , Respiración , Volumen Sanguíneo , Líquido Cefalorraquídeo , Humanos , Región Lumbosacra , Columna Vertebral
11.
J Physiol ; 598(3): 581-597, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31823371

RESUMEN

KEY POINTS: Coordination of the neuromuscular compartments of the tongue is critical to maintain airway patency. Currently, little is known about the extent to which regional tongue dilatory motion is coordinated in heathy people and if this coordination is altered in people with obstructive sleep apnoea (OSA). We show that regional tongue muscle coordination in people with and without OSA during wakefulness is associated with effective airway dilatation during inspiration, using dynamic tagged magnetic resonance imaging. The maximal movement of four compartments of the tongue were correlated and occurred concurrently towards the end of inspiration. If tongue movement was observed, people with more severe OSA had larger movement and moved more compartments (up to four) to maintain airway patency, while people without OSA moved only one compartment. These results suggest that airway patency is preserved during wakefulness in people with OSA via active dilatory movement of the genioglossus. ABSTRACT: Maintaining airway patency when supine requires neural drive to the genioglossus horizontal and oblique neuromuscular compartments (superior fan-like and inferior horizontal genioglossus, regions that are innervated by different branches of the hypoglossal nerve) to be coordinated during breathing, but it is unknown if this coordination is altered in obstructive sleep apnoea (OSA). This study aimed to assess coordination of airway dilatory motion across four mid-sagittal tongue compartments during inspiration (i.e. anterior and posterior of the horizontal and oblique compartments), and compare it in controls and OSA patients. Fifty-four participants (12 women, aged 20-73 years) underwent dynamic 'tagged' magnetic resonance imaging during wakefulness. Ten participants had no OSA [apnoea hypopnoea index (AHI) < 5 events h-1 ], 14 had mild OSA (5 < AHI ≤ 15 events h-1 ), 12 had moderate OSA (15 < AHI ≤ 30 events h-1 ) and 18 had severe OSA (AHI > 30 events h-1 ). A higher AHI was associated with a greater anterior movement of the anterior and posterior horizontal compartments (Spearman, r = -0.32, P = 0.02 for both), but not in the oblique compartments. If movement was observed, higher OSA severity was associated with an anterior movement of a greater number of compartments. Controls only moved the posterior horizontal compartment while the anterior horizontal compartment also moved in OSA participants. Oblique compartments moved only in people with severe OSA. The maximal anterior inspiratory movement of the four compartments was highly correlated (Spearman, P < 0.001) and occurred concurrently. The posterior horizontal compartment had the greatest anterior motion. These results suggest that airway patency is preserved during wakefulness in people with OSA via active dilatory movement of the genioglossus.


Asunto(s)
Apnea Obstructiva del Sueño , Vigilia , Adulto , Anciano , Femenino , Humanos , Nervio Hipogloso , Persona de Mediana Edad , Respiración , Lengua , Adulto Joven
12.
Thorax ; 75(3): 279-288, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937553

RESUMEN

BACKGROUND: Respiratory complications remain a leading cause of morbidity and mortality in people with acute and chronic tetraplegia. Respiratory muscle weakness following spinal cord injury-induced tetraplegia impairs lung function and the ability to cough. In particular, inspiratory muscle strength has been identified as the best predictor of the likelihood of developing pneumonia in individuals with tetraplegia. We hypothesised that 6 weeks of progressive respiratory muscle training (RMT) increases respiratory muscle strength with improvements in lung function, quality of life and respiratory health. METHODS: Sixty-two adults with tetraplegia participated in a double-blind randomised controlled trial. Active or sham RMT was performed twice daily for 6 weeks. Inspiratory muscle strength, measured as maximal inspiratory pressure (PImax) was the primary outcome. Secondary outcomes included lung function, quality of life and respiratory health. Between-group comparisons were obtained with linear models adjusting for baseline values of the outcomes. RESULTS: After 6 weeks, there was a greater improvement in PImax in the active group than in the sham group (mean difference 11.5 cmH2O (95% CI 5.6 to 17.4), p<0.001) and respiratory symptoms were reduced (St George Respiratory Questionnaire mean difference 10.3 points (0.01-20.65), p=0.046). Significant improvements were observed in quality of life (EuroQol-Five Dimensional Visual Analogue Scale 14.9 points (1.9-27.9), p=0.023) and perceived breathlessness (Borg score 0.64 (0.11-1.17), p=0.021). There were no significant improvements in other measures of respiratory function (p=0.126-0.979). CONCLUSIONS: Progressive RMT increases inspiratory muscle strength in people with tetraplegia, by a magnitude which is likely to be clinically significant. Measurement of baseline PImax and provision of RMT to at-risk individuals may reduce respiratory complications after tetraplegia. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ACTRN 12612000929808).


Asunto(s)
Ejercicios Respiratorios , Cuadriplejía/fisiopatología , Cuadriplejía/rehabilitación , Músculos Respiratorios/fisiopatología , Adulto , Anciano , Método Doble Ciego , Disnea/etiología , Femenino , Humanos , Inhalación , Pulmón/fisiopatología , Masculino , Presiones Respiratorias Máximas , Persona de Mediana Edad , Fuerza Muscular , Cuadriplejía/complicaciones , Calidad de Vida , Evaluación de Síntomas
13.
Exp Brain Res ; 238(7-8): 1759-1767, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32462377

RESUMEN

With a visual memory of where our hands are, their perceived location drifts. We investigated whether the perceived location of one hand or the spacing between two hands drifts in the absence of visual memories or cues. In 30 participants (17 females, mean age 27 years, range 20-45 years), perceived location of the right index finger was assessed when it was 10 cm to the right or left of the midline. Perceived spacing between the index fingers was assessed when they were spaced 20 cm apart, centred on the midline. Testing included two conditions, one with ten measures at 30 s intervals and another where a 3 min delay was introduced after the fifth measure. Participants responded by selecting a point on a ruler or a line from a series of lines of different lengths. Overall, participants mislocalised their hands closer to the midline. However, there was little to no drift in perceived index finger location when measures were taken at regular intervals (ipsilateral slope: 0.073 cm/measure [[Formula: see text] to 0.160], mean [99% CI]; contralateral slope: 0.045 cm/measure [[Formula: see text] to 0.120]), or across a 3 min delay (ipsilateral: ([Formula: see text] cm [[Formula: see text] to 0.17]; contralateral: [Formula: see text] cm [[Formula: see text] to 0.24]). There was a slight drift in perceived spacing when measures were taken at regular intervals (slope: [Formula: see text] cm/measure [[Formula: see text] to [Formula: see text]]), but none across a 3 min delay (0.08 cm [[Formula: see text] to 1.24]). Thus, proprioceptive-based perceptions of where our hands are located or how they are spaced drift minimally or not at all, indicating these perceptions are stable.


Asunto(s)
Mano , Propiocepción , Adulto , Femenino , Dedos , Humanos , Juicio , Persona de Mediana Edad , Adulto Joven
14.
Crit Care ; 24(1): 628, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33126902

RESUMEN

BACKGROUND: Expiratory muscle weakness leads to difficult ventilator weaning. Maintaining their activity with functional electrical stimulation (FES) may improve outcome. We studied feasibility of breath-synchronized expiratory population muscle FES in a mixed ICU population ("Holland study") and pooled data with our previous work ("Australian study") to estimate potential clinical effects in a larger group. METHODS: Holland: Patients with a contractile response to FES received active or sham expiratory muscle FES (30 min, twice daily, 5 days/week until weaned). Main endpoints were feasibility (e.g., patient recruitment, treatment compliance, stimulation intensity) and safety. Pooled: Data on respiratory muscle thickness and ventilation duration from the Holland and Australian studies were combined (N = 40) in order to estimate potential effect size. Plasma cytokines (day 0, 3) were analyzed to study the effects of FES on systemic inflammation. RESULTS: Holland: A total of 272 sessions were performed (active/sham: 169/103) in 20 patients (N = active/sham: 10/10) with a total treatment compliance rate of 91.1%. No FES-related serious adverse events were reported. Pooled: On day 3, there was a between-group difference (N = active/sham: 7/12) in total abdominal expiratory muscle thickness favoring the active group [treatment difference (95% confidence interval); 2.25 (0.34, 4.16) mm, P = 0.02] but not on day 5. Plasma cytokine levels indicated that early FES did not induce systemic inflammation. Using a survival analysis approach for the total study population, median ventilation duration and ICU length of stay were 10 versus 52 (P = 0.07), and 12 versus 54 (P = 0.03) days for the active versus sham group. Median ventilation duration of patients that were successfully extubated was 8.5 [5.6-12.2] versus 10.5 [5.3-25.6] days (P = 0.60) for the active (N = 16) versus sham (N = 10) group, and median ICU length of stay was 10.5 [8.0-14.5] versus 14.0 [9.0-19.5] days (P = 0.36) for those active (N = 16) versus sham (N = 8) patients that were extubated and discharged alive from the ICU. During ICU stay, 3/20 patients died in the active group versus 8/20 in the sham group (P = 0.16). CONCLUSION: Expiratory muscle FES is feasible in selected ICU patients and might be a promising technique within a respiratory muscle-protective ventilation strategy. The next step is to study the effects on weaning and ventilator liberation outcome. TRIAL REGISTRATION: ClinicalTrials.gov, ID NCT03453944. Registered 05 March 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03453944 .


Asunto(s)
Estimulación Eléctrica/métodos , Músculos Respiratorios/inervación , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Estimulación Eléctrica/instrumentación , Estudios de Factibilidad , Femenino , Mortalidad Hospitalaria/tendencias , Humanos , Masculino , Medicare/estadística & datos numéricos , Medicare/tendencias , Modelos de Riesgos Proporcionales , Respiración Artificial/instrumentación , Respiración Artificial/métodos , Músculos Respiratorios/fisiopatología , Estudios Retrospectivos , Estados Unidos
15.
Spinal Cord ; 58(8): 857-864, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32086442

RESUMEN

STUDY DESIGN: A multi-centred, single-blinded randomised controlled trial. OBJECTIVES: To determine the effect of 10,000 voluntary contractions over 8 weeks on the strength of very weak muscles in people with spinal cord injury (SCI). SETTINGS: Seven hospitals in Australia and Asia. METHODS: One hundred and twenty people with recent SCI undergoing inpatient rehabilitation were randomised to either a Treatment or Control Group. One major muscle group from an upper or lower limb was selected if the muscle had grade 1 or grade 2 strength on a standard six-point manual muscle test. Participants allocated to the Treatment Group performed 10,000 isolated contractions of the selected muscle group, as well as usual care in 48 sessions over 8 weeks. Participants allocated to the Control Group received usual care alone. Participants were assessed at baseline and 8 weeks by a blinded assessor. The primary outcome was voluntary muscle strength on a 13-point manual muscle test. There were three secondary outcomes capturing therapists' and participants' perceptions of strength and function. RESULTS: The mean between-group difference of voluntary strength at 8 weeks was 0.4/13 points (95% confidence interval -0.5 to 1.4) in favour of the Treatment Group. There were no notable between-group differences on any secondary outcome. CONCLUSION: Ten thousand isolated contractions of very weak muscles in people with SCI over 8 weeks has either no or a very small effect on voluntary strength.


Asunto(s)
Contracción Muscular , Fuerza Muscular , Debilidad Muscular/rehabilitación , Músculo Esquelético , Evaluación de Resultado en la Atención de Salud , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Asia , Australia , Terapia por Ejercicio/métodos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Debilidad Muscular/etiología , Músculo Esquelético/fisiopatología , Método Simple Ciego , Traumatismos de la Médula Espinal/complicaciones
16.
J Physiol ; 597(24): 5973-5984, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31671476

RESUMEN

KEY POINTS: How we judge the location of our body parts can be affected by a range of factors that change how our brain interprets proprioceptive signals. We examined the effect of several such factors on how we perceive an object's width and the spacing between our thumb and fingers when grasping. Grasp-related perceptions were slightly wider when using all digits, in line with our tendency to grasp larger objects with the entire hand. Surprisingly, these perceptions were not affected by the frames of reference for judgements (object width versus grasp aperture), whether the object was grasped actively or passively, or the strength of the grasp. These results show that the brain maintains a largely stable representation of the hand when grasping stationary objects. This stability may underpin our dexterity when grasping a vast array of objects. ABSTRACT: Various factors can alter how the brain interprets proprioceptive signals, leading to errors in how we perceive our body and execute motor tasks. This study determined the effect of critical factors on hand-based perceptions. In Experiment 1, 20 participants grasped without lifting an unseen 6.5 cm-wide object with two grasp configurations: thumb and all fingers, and thumb and index finger. Participants reported perceived grasp aperture (body reference frame) or perceived object width (external reference frame) using visual charts. In Experiment 2, 20 participants grasped the object with three grasp intensities (1, 5 and 15% maximal grasp force) actively or passively and reported perceived grasp aperture. A follow-up experiment addressed whether results from Experiment 2 were influenced by the external force applied during passive grasp. Overall, there was a mean difference of 0.38 cm (95% confidence interval (CI), 0.12 to 0.63) between the two grasp configurations (all digits compared to thumb and index finger). Perceived object width compared to perceived grasp aperture differed by only -0.04 cm (95% CI, -0.30 to 0.21). There was no real effect of grasp intensity on perceived grasp aperture (-0.01 cm; 95% CI, -0.03 to 0.01) or grasp type (active versus passive; 0.18 cm; 95% CI, -0.19 to 0.55). Overall, grasp-related perceptions are slightly wider when using all digits, in line with our tendency to grasp larger objects with the entire hand. The other factors - frame of reference, grasp intensity and grasp type - had no meaningful effect on these perceptions. These results provide evidence that the brain maintains a largely stable representation of the hand.


Asunto(s)
Fuerza de la Mano , Propiocepción , Percepción Visual , Adulto , Encéfalo/fisiología , Femenino , Dedos/inervación , Dedos/fisiología , Humanos , Masculino , Persona de Mediana Edad
17.
Physiol Rev ; 92(4): 1651-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23073629

RESUMEN

This is a review of the proprioceptive senses generated as a result of our own actions. They include the senses of position and movement of our limbs and trunk, the sense of effort, the sense of force, and the sense of heaviness. Receptors involved in proprioception are located in skin, muscles, and joints. Information about limb position and movement is not generated by individual receptors, but by populations of afferents. Afferent signals generated during a movement are processed to code for endpoint position of a limb. The afferent input is referred to a central body map to determine the location of the limbs in space. Experimental phantom limbs, produced by blocking peripheral nerves, have shown that motor areas in the brain are able to generate conscious sensations of limb displacement and movement in the absence of any sensory input. In the normal limb tendon organs and possibly also muscle spindles contribute to the senses of force and heaviness. Exercise can disturb proprioception, and this has implications for musculoskeletal injuries. Proprioceptive senses, particularly of limb position and movement, deteriorate with age and are associated with an increased risk of falls in the elderly. The more recent information available on proprioception has given a better understanding of the mechanisms underlying these senses as well as providing new insight into a range of clinical conditions.


Asunto(s)
Movimiento/fisiología , Músculo Esquelético/fisiología , Postura/fisiología , Propiocepción/fisiología , Envejecimiento/fisiología , Ejercicio Físico/fisiología , Humanos , Mecanorreceptores/fisiología , Husos Musculares/fisiología
19.
Exerc Sport Sci Rev ; 47(3): 157-168, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30985474

RESUMEN

What determines which motor units are active in a motor task? In the respiratory muscles, motor units are recruited according to their mechanical advantages. We describe a principle of motor unit recruitment by neuromechanical matching due to mechanisms in the spinal cord that sculpt descending drive to motoneurons. This principle may be applicable to movements in nonrespiratory muscles.


Asunto(s)
Neuronas Motoras/fisiología , Movimiento/fisiología , Reclutamiento Neurofisiológico , Músculos Respiratorios/fisiología , Médula Espinal/fisiología , Humanos , Músculo Esquelético/fisiología
20.
Exp Brain Res ; 237(7): 1773-1779, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31037326

RESUMEN

Whether visible or not, knowing the location of our hands is fundamental to how we perceive ourselves and interact with our environment. The present study investigated perceived hand location in the absence of vision in 30 participants. Their right index finger was placed 10, 20 or 30 cm away on either side of the body midline, with and without their left index finger placed 10 cm to the left of the right index. On average, at each position, participants perceived their right hand closer to the body midline than it actually was. This underestimation increased linearly with increased distance of the hand from body midline [slope 0.77 (0.74 to 0.81), mean (95% CI)]. Participants made smaller errors in perceived hand location when the right hand was in the contralateral workspace [mean difference 2.13 cm (1.57 to 2.69)]. Presence of the left hand on the support surface had little or no effect on perceived location of the right hand [mean difference [Formula: see text] cm ([Formula: see text] to 0.02)]. Overall, participants made systematic perceptual errors immediately after hand placement. The magnitude of these errors grew linearly as the hand got further away from the body midline. Because of their magnitude, these errors may contribute to errors in motor planning when visual feedback is not available. Also, these errors are important for studies in which perceived hand location is assessed after some time, for example, when studying illusions of body ownership and proprioceptive drift.


Asunto(s)
Mano/fisiología , Ilusiones/fisiología , Ilusiones/psicología , Propiocepción/fisiología , Percepción del Tacto/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA