Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(8): 2149-2160, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36972469

RESUMEN

Chemists can be skeptical in using deep learning (DL) in decision making, due to the lack of interpretability in "black-box" models. Explainable artificial intelligence (XAI) is a branch of artificial intelligence (AI) which addresses this drawback by providing tools to interpret DL models and their predictions. We review the principles of XAI in the domain of chemistry and emerging methods for creating and evaluating explanations. Then, we focus on methods developed by our group and their applications in predicting solubility, blood-brain barrier permeability, and the scent of molecules. We show that XAI methods like chemical counterfactuals and descriptor explanations can explain DL predictions while giving insight into structure-property relationships. Finally, we discuss how a two-step process of developing a black-box model and explaining predictions can uncover structure-property relationships.

2.
Digit Discov ; 2(2): 368-376, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065678

RESUMEN

In this work, we investigate the question: do code-generating large language models know chemistry? Our results indicate, mostly yes. To evaluate this, we introduce an expandable framework for evaluating chemistry knowledge in these models, through prompting models to solve chemistry problems posed as coding tasks. To do so, we produce a benchmark set of problems, and evaluate these models based on correctness of code by automated testing and evaluation by experts. We find that recent LLMs are able to write correct code across a variety of topics in chemistry and their accuracy can be increased by 30 percentage points via prompt engineering strategies, like putting copyright notices at the top of files. Our dataset and evaluation tools are open source which can be contributed to or built upon by future researchers, and will serve as a community resource for evaluating the performance of new models as they emerge. We also describe some good practices for employing LLMs in chemistry. The general success of these models demonstrates that their impact on chemistry teaching and research is poised to be enormous.

3.
Chem Sci ; 12(35): 11922, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34659733

RESUMEN

[This corrects the article DOI: 10.1039/D0SC02458A.].

4.
Chem Sci ; 11(35): 9524-9531, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34123175

RESUMEN

The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by experts. In this work, we demonstrate an automated approach by viewing this problem as supervised learning where we seek to reproduce the mapping operators produced by experts. We present a graph neural network based CG mapping predictor called Deep Supervised Graph Partitioning Model (DSGPM) that treats mapping operators as a graph segmentation problem. DSGPM is trained on a novel dataset, Human-annotated Mappings (HAM), consisting of 1180 molecules with expert annotated mapping operators. HAM can be used to facilitate further research in this area. Our model uses a novel metric learning objective to produce high-quality atomic features that are used in spectral clustering. The results show that the DSGPM outperforms state-of-the-art methods in the field of graph segmentation. Finally, we find that predicted CG mapping operators indeed result in good CG MD models when used in simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA