Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38777155

RESUMEN

BACKGROUND: Mast cell-derived mediators induce vasodilatation and fluid extravasation, leading to cardiovascular failure in severe anaphylaxis. We previously revealed a synergistic interaction between the cytokine IL-4 and the mast cell-derived mediator histamine in modulating vascular endothelial (VE) dysfunction and severe anaphylaxis. The mechanism by which IL-4 exacerbates histamine-induced VE dysfunction and severe anaphylaxis is unknown. OBJECTIVE: We sought to identify the IL-4-induced molecular processes regulating the amplification of histamine-induced VE barrier dysfunction and the severity of IgE-mediated anaphylactic reactions. METHODS: RNA sequencing, Western blot, Ca2+ imaging, and barrier functional analyses were performed on the VE cell line (EA.hy926). Pharmacologic degraders (selective proteolysis-targeting chimera) and genetic (lentiviral short hairpin RNA) inhibitors were used to determine the roles of signal transducer and activator of transcription 3 (STAT3) and STAT6 in conjunction with in vivo model systems of histamine-induced hypovolemic shock. RESULTS: IL-4 enhancement of histamine-induced VE barrier dysfunction was associated with increased VE-cadherin degradation, intracellular calcium flux, and phosphorylated Src levels and required transcription and de novo protein synthesis. RNA sequencing analyses of IL-4-stimulated VE cells identified dysregulation of genes involved in cell proliferation, cell development, and cell growth, and transcription factor motif analyses revealed a significant enrichment of differential expressed genes with putative STAT3 and STAT6 motif. IL-4 stimulation in EA.hy926 cells induced both serine residue 727 and tyrosine residue 705 phosphorylation of STAT3. Genetic and pharmacologic ablation of VE STAT3 activity revealed a role for STAT3 in basal VE barrier function; however, IL-4 enhancement and histamine-induced VE barrier dysfunction was predominantly STAT3 independent. In contrast, IL-4 enhancement and histamine-induced VE barrier dysfunction was STAT6 dependent. Consistent with this finding, pharmacologic knockdown of STAT6 abrogated IL-4-mediated amplification of histamine-induced hypovolemia. CONCLUSIONS: These studies unveil a novel role of the IL-4/STAT6 signaling axis in the priming of VE cells predisposing to exacerbation of histamine-induced anaphylaxis.

2.
J Allergy Clin Immunol ; 151(1): 182-191.e6, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35934083

RESUMEN

BACKGROUND: Food allergy diagnosis and management causes a number of social and emotional challenges for individuals with food allergies and their caregivers. This has led to increased interest in developing approaches to accurately predict food allergy diagnosis, severity of food allergic reactions, and treatment outcomes. However, the utility of these approaches is somewhat conflicting. OBJECTIVE: We sought to develop and utilize a murine model that mimics the disease course of food allergy diagnosis and treatment in humans and to identify biomarkers that predict reactivity during food challenge (FC) and responsiveness during oral immunotherapy (OIT) and how these outcomes are modified by genetics. METHODS: Skin-sensitized intestinal IL-9 transgenic (IL9Tg) and IL9Tg mice backcrossed onto the IL-4RαY709F background received a single intragastric exposure of egg antigen (ovalbumin), underwent oral FC and OIT; food allergy severity, mast cell activation, and ovalbumin-specific IgE levels were examined to determine the predictability of these outcomes in determining reactivity and treatment outcomes. RESULTS: Subcutaneous sensitization and a single intragastric allergen challenge of egg antigen to BALB/c IL9Tg mice and Il4raY709F IL9Tg induced a food allergic reaction. Enhanced IL-4Rα signaling altered the symptoms induced by the first oral exposure, decreased the cumulative antigen dose, increased the severity of reaction during oral FC, and altered the frequency of adverse events and OIT outcomes. Biomarkers after first oral exposure indicated that only the severity of the initial reaction significantly correlated with cumulative dose of oral FC. CONCLUSION: Collectively, these data indicate that single nucleotide polymorphisms in IL-4Rα can alter clinical symptoms of food allergic reactions, severity, and reactive dose during FC and OIT, and that severity of first reaction can predict the likelihood of reaction during FC in mice with IL-4Rα gain of function.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Humanos , Ratones , Animales , Ovalbúmina , Inmunoterapia , Ratones Transgénicos , Biomarcadores , Administración Oral , Desensibilización Inmunológica
3.
J Allergy Clin Immunol ; 152(6): 1550-1568, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37652141

RESUMEN

BACKGROUND: Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE: We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS: We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS: RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS: These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.


Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/patología , Interleucina-13/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular
4.
Clin Exp Allergy ; 53(5): 536-549, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36756745

RESUMEN

INTRODUCTION: Food allergic reactions can be severe and potentially life-threatening and the underlying immunological processes that contribute to the severity of reactions are poorly understood. The aim of this study is to integrate bulk RNA-sequencing of human and mouse peripheral blood mononuclear cells during food allergic reactions and in vivo mouse models of food allergy to identify dysregulated immunological processes associated with severe food allergic reactions. METHODS: Bulk transcriptomics of whole blood from human and mouse following food allergic reactions combined with integrative differential expressed gene bivariate and module eigengene network analyses to identify the whole blood transcriptome associated with food allergy severity. In vivo validation immune cell and gene expression in mice following IgE-mediated reaction. RESULTS: Bulk transcriptomics of whole blood from mice with different severity of food allergy identified gene ontology (GO) biological processes associated with innate and inflammatory immune responses, dysregulation of MAPK and NFkB signalling and identified 429 genes that correlated with reaction severity. Utilizing two independent human cohorts, we identified 335 genes that correlated with severity of peanut-induced food allergic reactions. Mapping mouse food allergy severity transcriptome onto the human transcriptome revealed 11 genes significantly dysregulated and correlated with severity. Analyses of whole blood from mice undergoing an IgE-mediated reaction revealed a rapid change in blood leukocytes particularly inflammatory monocytes (Ly6Chi Ly6G- ) and neutrophils that was associated with changes in CLEC4E, CD218A and GPR27 surface expression. CONCLUSIONS: Collectively, IgE-mediated food allergy severity is associated with a rapid innate inflammatory response associated with acute cellular stress processes and dysregulation of peripheral blood inflammatory myeloid cell frequencies.


Asunto(s)
Fenómenos Biológicos , Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Humanos , Animales , Ratones , Leucocitos Mononucleares , Hipersensibilidad a los Alimentos/genética , Alérgenos , Inmunoglobulina E , Receptores Acoplados a Proteínas G
5.
J Allergy Clin Immunol ; 147(1): 280-295, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069715

RESUMEN

BACKGROUND: This study group has previously identified IL-9-producing mucosal mast cell (MMC9) as the primary source of IL-9 to drive intestinal mastocytosis and experimental IgE-mediated food allergy. However, the molecular mechanisms that regulate the expansion of MMC9s remain unknown. OBJECTIVES: This study hypothesized that IL-4 regulates MMC9 development and MMC9-dependent experimental IgE-mediated food allergy. METHODS: An epicutaneous sensitization model was used and bone marrow reconstitution experiments were performed to test the requirement of IL-4 receptor α (IL-4Rα) signaling on MMC9s in experimental IgE-mediated food allergy. Flow cytometric, bulk, and single-cell RNA-sequencing analyses on small intestine (SI) MMC9s were performed to illuminate MMC9 transcriptional signature and the effect of IL-4Rα signaling on MMC9 function. A bone marrow-derived MMC9 culture system was used to define IL-4-BATF signaling in MMC9 development. RESULTS: Epicutaneous sensitization- and bone marrow reconstitution-based models of IgE-mediated food allergy revealed an IL-4 signaling-dependent cell-intrinsic effect on SI MMC9 accumulation and food allergy severity. RNA-sequencing analysis of SI-MMC9s identified 410 gene transcripts reciprocally regulated by IL-4 signaling, including Il9 and Batf. Insilico analyses identified a 3491-gene MMC9 transcriptional signature and identified 2 transcriptionally distinct SI MMC9 populations enriched for metabolic or inflammatory programs. Employing an in vitro MMC9-culture model system showed that generation of MMC9-like cells was induced by IL-4 and this was in part dependent on BATF. CONCLUSIONS: IL-4Rα signaling directly modulates MMC9 function and exacerbation of experimental IgE-mediated food allergic reactions. IL-4Rα regulation of MMC9s is in part BATF-dependent and occurs via modulation of metabolic transcriptional programs.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Hipersensibilidad a los Alimentos/inmunología , Interleucina-4/inmunología , Interleucina-9/inmunología , Mucosa Intestinal/inmunología , Mastocitos/inmunología , Transducción de Señal/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos/genética , Hipersensibilidad a los Alimentos/patología , Interleucina-4/genética , Interleucina-9/genética , Mucosa Intestinal/patología , Mastocitos/patología , Ratones , Ratones Noqueados , Transducción de Señal/genética
6.
Front Immunol ; 12: 636198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841417

RESUMEN

Food allergy is an emerging epidemic, and the underlying mechanisms are not well defined partly due to the lack of robust adjuvant free experimental models of dietary antigen sensitization. As housing mice at thermoneutrality (Tn) - the temperature of metabolic homeostasis (26-30°C) - has been shown to improve modeling various human diseases involved in inflammation, we tested the impact of Tn housing on an experimental model of food sensitization. Here we demonstrate that WT BALB/c mice housed under standard temperature (18-20°C, Ts) conditions translocated the luminal antigens in the small intestine (SI) across the epithelium via goblet cell antigen passages (GAPs). In contrast, food allergy sensitive Il4raF709 mice housed under standard temperature conditions translocated the luminal antigens in the SI across the epithelium via secretory antigen passages (SAPs). Activation of SI antigen passages and oral challenge of Il4raF709 mice with egg allergens at standard temperature predisposed Il4raF709 mice to develop an anaphylactic reaction. Housing Il4raF709 mice at Tn altered systemic type 2 cytokine, IL-4, and the landscape of SI antigen passage patterning (villus and crypt involvement). Activation of SI antigen passages and oral challenge of Il4raF709 mice with egg antigen under Tn conditions led to the robust induction of egg-specific IgE and development of food-induced mast cell activation and hypovolemic shock. Similarly, Tn housing of WT BALB/c mice altered the cellular patterning of SI antigen passage (GAPs to SAPs). Activation of SI antigen passages and the oral challenge of WT BALB/c mice with egg antigen led to systemic reactivity to egg and mast cell activation. Together these data demonstrate that Tn housing alters antigen passage cellular patterning and landscape, and concurrent oral exposure of egg antigens and SAP activation is sufficient to induce oral antigen sensitization.


Asunto(s)
Alérgenos/metabolismo , Anafilaxia/metabolismo , Hipersensibilidad al Huevo/metabolismo , Proteínas del Huevo/metabolismo , Vivienda para Animales , Intestino Delgado/metabolismo , Temperatura , Administración Oral , Alérgenos/administración & dosificación , Alérgenos/inmunología , Anafilaxia/inmunología , Anafilaxia/microbiología , Animales , Modelos Animales de Enfermedad , Hipersensibilidad al Huevo/inmunología , Hipersensibilidad al Huevo/microbiología , Proteínas del Huevo/administración & dosificación , Proteínas del Huevo/inmunología , Microbioma Gastrointestinal , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones Endogámicos BALB C , Ratones Noqueados , Permeabilidad , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
7.
Cell Mol Gastroenterol Hepatol ; 12(4): 1479-1502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34242819

RESUMEN

BACKGROUND & AIMS: CD4+ T cells are regulated by activating and inhibitory cues, and dysregulation of these proper regulatory inputs predisposes these cells to aberrant inflammation and exacerbation of disease. We investigated the role of the inhibitory receptor paired immunoglobulin-like receptor B (PIR-B) in the regulation of the CD4+ T-cell inflammatory response and exacerbation of the colitic phenotype. METHODS: We used Il10-/- spontaneous and CD4+CD45RBhi T-cell transfer models of colitis with PIR-B-deficient (Pirb-/-) mice. Flow cytometry, Western blot, and RNA sequencing analysis was performed on wild-type and Pirb-/- CD4+ T cells. In silico analyses were performed on RNA sequencing data set of ileal biopsy samples from pediatric CD and non-inflammatory bowel disease patients and sorted human memory CD4+ T cells. RESULTS: We identified PIR-B expression on memory CD4+ interleukin (IL)17a+ cells. We show that PIR-B regulates CD4+ T-helper 17 cell (Th17)-dependent chronic intestinal inflammatory responses and the development of colitis. Mechanistically, we show that the PIR-B- Src-homology region 2 domain-containing phosphatase-1/2 axis tempers mammalian target of rapamycin complex 1 signaling and mammalian target of rapamycin complex 1-dependent caspase-3/7 apoptosis, resulting in CD4+ IL17a+ cell survival. In silico analyses showed enrichment of transcriptional signatures for Th17 cells (RORC, RORA, and IL17A) and tissue resident memory (HOBIT, IL7R, and BLIMP1) networks in PIR-B+ murine CD4+ T cells and human CD4+ T cells that express the human homologue leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3). High levels of LILRB3 expression were associated strongly with mucosal injury and a proinflammatory Th17 signature, and this signature was restricted to a treatment-naïve, severe pediatric CD population. CONCLUSIONS: Our findings show an intrinsic role for PIR-B/LILRB3 in the regulation of CD4+ IL17a+ T-cell pathogenic memory responses.


Asunto(s)
Regulación de la Expresión Génica , Inmunomodulación , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Receptores Inmunológicos/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Biomarcadores , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Colitis/etiología , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Inmunohistoquímica , Memoria Inmunológica , Inmunofenotipificación , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Receptores Inmunológicos/metabolismo , Transducción de Señal
8.
PLoS One ; 14(8): e0219375, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31369572

RESUMEN

BACKGROUND: Previous studies have revealed an important role for the transcription factor GATA-1 in mast cell maturation and degranulation. However, there have been conflicting reports with respect to the requirement of GATA-1 function in mast cell dependent inflammatory processes. Herein, we examine the requirement of GATA-1 signaling in mast cell effector function and IgE-mast cell-dependent anaphylaxis. OBJECTIVE: To study the requirement of GATA-1 dependent signaling in the development and severity of IgE-mast cell-dependent anaphylaxis in mice. METHODS: Wild type (Balb/c) and mutant ΔdblGata (Balb/c) mice were employed to study the role of GATA-1 signaling in in vitro IgE-mediated activation of bone marrow derived mast cells (BMMCs). Murine models of passive IgE-mediated and oral antigen-induced IgE-mediated anaphylaxis were employed in mice. Frequency of steady state mast cells in various tissues (duodenum, ear, and tongue), peritoneal cavity, and clinical symptoms (diarrhea, shock, and mast cell activation) and intestinal Type 2 immune cell analysis including CD4+ Th2 cells, type 2 innate lymphoid cells (ILC2), and IL-9 secreting mucosal mast cells (MMC9) were assessed. RESULTS: In vitro analysis revealed that ΔdblGata BMMCs exhibit a reduced maturation rate, decreased expression of FcεRIα, and degranulation capacity when compared to their wildtype (WT) counterparts. These in vitro differences did not impact tissue resident mast cell numbers, total IgE, and susceptibility to or severity of IgE-mediated passive anaphylaxis. Surprisingly, ΔdblGata mice were more susceptible to IgE-mast cell-mediated oral antigen induced anaphylaxis. The increased allergic response was associated with increased Type 2 immunity (antigen-specific IgE, and CD4+ TH2 cells), MMC9 cells and small intestine (SI) mast cell load. CONCLUSION: Diminished GATA-1 activity results in reduced in vitro mast cell FcεRIα expression, proliferation, and degranulation activity. However, in vivo, diminished GATA-1 activity results in normal homeostatic tissue mast cell levels and increased antigen-induced CD4+ Th2 and iMMC9 cell levels and heightened IgE-mast cell mediated reactions.


Asunto(s)
Anafilaxia/etiología , Hipersensibilidad a los Alimentos/etiología , Factor de Transcripción GATA1/fisiología , Inmunoglobulina E/efectos adversos , Mastocitos/inmunología , Eliminación de Secuencia , Índice de Severidad de la Enfermedad , Anafilaxia/metabolismo , Anafilaxia/patología , Animales , Hipersensibilidad a los Alimentos/metabolismo , Hipersensibilidad a los Alimentos/patología , Inmunoglobulina E/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
9.
Nat Commun ; 5: 4124, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24916461

RESUMEN

The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mycobacterium tuberculosis/genética , Estilbenos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Microscopía Electrónica , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/ultraestructura , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA