Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 91(6): 2257-2265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411351

RESUMEN

PURPOSE: To develop a novel signal representation for balanced steady state free precession (bSSFP) displaying its T2 independence on B1 and on magnetization transfer (MT) effects. METHODS: A signal model for bSSFP is developed that shows only an explicit dependence (up to a scaling factor) on E2 (and, therefore, T2) and a novel parameter c (with implicit dependence on the flip angle and E1). Moreover, it is shown that MT effects, entering the bSSFP signal via a binary spin bath model, can be captured by a redefinition of T1 and, therefore, leading to modification of E1, resulting in the same signal model. Various sets of phase-cycled bSSFP brain scans (different flip angles, different TR, different RF pulse durations, and different number of phase cycles) were recorded at 3 T. The parameters T2 (E2) and c were estimated using a variable projection (VARPRO) method and Monte-Carlo simulations were performed to assess T2 estimation precision. RESULTS: Initial experiments confirmed the expected independence of T2 on various protocol settings, such as TR, the flip angle, B1 field inhomogeneity, and the RF pulse duration. Any variation (within the explored range) appears to directly affect the estimation of the parameter c only-in agreement with theory. CONCLUSION: BSSFP theory predicts an extraordinary feature that all MT and B1-related variational aspects do not enter T2 estimation, making it a potentially robust methodology for T2 quantification, pending validation against existing standards.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Algoritmos , Neuroimagen , Fantasmas de Imagen
2.
Magn Reson Med ; 92(1): 215-225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38321594

RESUMEN

PURPOSE: Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems. THEORY AND METHODS: Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures. RESULTS: Based on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations. CONCLUSION: The study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.


Asunto(s)
Acetona , Algoritmos , Simulación por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Agua , Imagen por Resonancia Magnética/métodos , Agua/química , Acetona/química , Acetona/análisis , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
3.
J Magn Reson Imaging ; 59(5): 1542-1552, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37501387

RESUMEN

BACKGROUND: Several magnetic resonance (MR) techniques have been suggested for radiation-free imaging of osseous structures. PURPOSE: To compare the diagnostic value of ultra-short echo time and gradient echo T1-weighted MRI for the assessment of vertebral pathologies using histology and computed tomography (CT) as the reference standard. STUDY TYPE: Prospective. SUBJECTS: Fifty-nine lumbar vertebral bodies harvested from 20 human cadavers (donor age 73 ± 13 years; 9 male). FIELD STRENGTH/SEQUENCE: Ultra-short echo time sequence optimized for both bone (UTEb) and cartilage (UTEc) imaging and 3D T1-weighted gradient-echo sequence (T1GRE) at 3 T; susceptibility-weighted imaging (SWI) gradient echo sequence at 1.5 T. CT was performed on a dual-layer dual-energy CT scanner using a routine clinical protocol. ASSESSMENT: Histopathology and conventional CT were acquired as standard of reference. Semi-quantitative and quantitative morphological features of degenerative changes of the spines were evaluated by four radiologists independently on CT and MR images independently and blinded to all other information. Features assessed were osteophytes, endplate sclerosis, visualization of cartilaginous endplate, facet joint degeneration, presence of Schmorl's nodes, and vertebral dimensions. Vertebral disorders were assessed by a pathologist on histology. STATISTICAL TESTS: Agreement between T1GRE, SWI, UTEc, and UTEb sequences and CT imaging and histology as standard of reference were assessed using Fleiss' κ and intra-class correlation coefficients, respectively. RESULTS: For the morphological assessment of osteophytes and endplate sclerosis, the overall agreement between SWI, T1GRE, UTEb, and UTEc with the reference standard (histology combined with CT) was moderate to almost perfect for all readers (osteophytes: SWI, κ range: 0.68-0.76; T1GRE: 0.92-1.00; UTEb: 0.92-1.00; UTEc: 0.77-0.85; sclerosis: SWI, κ range: 0.60-0.70; T1GRE: 0.77-0.82; UTEb: 0.81-0.92; UTEc: 0.61-0.71). For the visualization of the cartilaginous endplate, UTEc showed the overall best agreement with the reference standard (histology) for all readers (κ range: 0.85-0.93). DATA CONCLUSIONS: Morphological assessment of vertebral pathologies was feasible and accurate using the MR-based bone imaging sequences compared to CT and histopathology. T1GRE showed the overall best performance for osseous changes and UTEc for the visualization of the cartilaginous endplate. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Osteofito , Humanos , Masculino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Prospectivos , Esclerosis , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Vértebras Lumbares/diagnóstico por imagen , Estándares de Referencia
4.
Magn Reson Med ; 89(6): 2264-2269, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705048

RESUMEN

PURPOSE: It is shown that the steady state of rapid, TR-periodic steady-state free precession (SSFP) sequences at small to moderate flip angles exhibits a universal, approximate scaling law with respect to variations of B 1 + $$ {B}_1^{+} $$ . Implications for the accuracy and precision of relaxometry experiments are discussed. METHODS: The approximate scaling law is derived from and numerically tested against known analytical solutions. To assess the attainable estimator precision in a typical relaxometry experiment, we calculate the Cramér-Rao bound (CRB) and perform Monte Carlo (MC) simulations. RESULTS: The approximate universal scaling holds well up to moderate flip angles. For pure steady state relaxometry, we observe a significant precision penalty for simultaneous estimation of R 1 $$ {R}_1 $$ and B 1 + $$ {B}_1^{+} $$ , whereas good R 2 $$ {R}_2 $$ estimates can be obtained without even knowing the correct actual flip angle. CONCLUSION: Simultaneous estimation of R 1 $$ {R}_1 $$ and B 1 + $$ {B}_1^{+} $$ from a set of SSFP steady states alone is not advisable. Apart from separate B 1 + $$ {B}_1^{+} $$ measurements, the problem can be addressed by adding transient state information, but, depending on the situation, residual effects due to the scaling may still require some attention.


Asunto(s)
Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos
5.
Magn Reson Med ; 87(4): 2034-2043, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34826167

RESUMEN

PURPOSE: Local solutions provide little intuition about the contrast, generated by MRI sequences with unbalanced gradients. A configuration space representation of the spin density allows to formalize signal localization and thereby overcome these limitations. THEORY AND METHODS: The continuous configuration model (CCM) constitutes a Fourier integral decomposition of the spin density, such that intrinsic tissue properties are separated from accumulated effects due to gradients and/or bulk off-resonance. Thereby, any set of local dynamic equations is automatically transformed into a corresponding set of differential equations between configurations. RESULTS: The CCM generalizes the Fourier-based EPG formalism such that it becomes applicable to arbitrary MRI sequences. It enables a rigorous and concise treatment of signal localization (selective excitation, spatial encoding), inhomogeneous broadening and motion. Applied to frequency swept NMR, a close connection between SWIFT and SSFP sequences can be found. CONCLUSION: The CCM allows to view arbitrary MRI sequences from a signal processing perspective, which might simplify the development and optimization of novel imaging strategies.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Movimiento (Física) , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador
6.
Magn Reson Med ; 87(3): 1250-1260, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34752636

RESUMEN

PURPOSE: To present a new complex-valued B1+ mapping method for electrical properties tomography using Carr-Purcell spin echoes. METHODS: A Carr-Purcell (CP) echo train generates pronounced flip-angle dependent oscillations that can be used to estimate the magnitude of B1+ . To this end, a dictionary is used that takes into account the slice profile as well as T2 relaxation along the echo train. For validation, the retrieved B1+ map is compared with the actual flip angle imaging (AFI) method in a phantom (79 ε0 , 0.34 S/m). Moreover, the phase of the first echo reflects the transceive phase. Overall, the CP echo train yields an estimate of the complex-valued B1+ , allowing electrical properties tomography with both permittivity and conductivity. The presented method is evaluated in phantom scans as well as for in vivo brain at 3 T. RESULTS: In the phantom, the obtained magnitude B1+ maps retrieved from the CP echo train and the AFI method show excellent agreement, and both the reconstructed estimated permittivity (79 ± 3) ε0 and conductivity (0.35 ± 0.04) S/m values are in accordance with expectations. In the brain, the obtained electrical properties are also close to expectations. In addition to the retrieved complex B1+ information, the decay of the CP echo trains also yields an estimate for T2 . CONCLUSION: The CP sequence can be used to simultaneously provide both B1+ magnitude and phase estimations, and therefore allows for full reconstruction of the electrical properties.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cabeza , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
7.
Magn Reson Med ; 87(4): 1886-1893, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34775622

RESUMEN

PURPOSE: To show that for tissues the conspicuous asymmetries in the frequency response function of bSSFP can be mitigated by using a short enough TR. THEORY AND METHODS: Configuration theory indicates that bSSFP becomes apparently "pure" (i.e., exhibiting a symmetric profile) in the limit of TR → 0 . To this end, the frequency profile of bSSFP was measured as a function of the TR using a manganese-doped aqueous probe, as well as brain tissue that was shown to exhibit a pronounced asymmetry due to its microstructure. The frequency response function was sampled using N = 72 (phantom) and N = 36 (in vivo) equally distributed linear RF phase increments in the interval [ 0 , 2 π ) . Imaging was performed with 2.0 mm isotropic resolution over a TR range of 1.5-8 ms at 3 and 1.5 T. RESULTS: As expected, pure substances showed a symmetric TR-independent frequency profile, whereas brain tissue revealed a pronounced asymmetry. The observed asymmetry for the tissue, however, decreases with decreasing TR and gives strong evidence that the frequency response function of bSSFP becomes symmetric in the limit of TR → 0 , in agreement with theory. The limit of apparently pure bSSFP imaging can thus be achieved for a TR ∼ 1.5 ms at 1.5 T, whereas at 3 T, tissues still show some residual asymmetry. CONCLUSION: In the limit of short enough TR, tissues become apparently pure for bSSFP. This limit can be reached for brain tissue at 1.5 T with TR ∼ 1-2 ms at clinically relevant resolutions.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
8.
MAGMA ; 33(5): 713-724, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32048099

RESUMEN

OBJECTIVE: To measure T2 values for magnetic resonance neurography (MRN) of the healthy distal sciatic nerve and compare those to T2 changes in patients with nerve compression. MATERIALS AND METHODS: Twenty-one healthy subjects and five patients with sciatica due to disc herniation underwent MRN using a T2-prepared turbo spin echo (TSE) sequence of the distal sciatic nerve bilaterally. Six and one of those healthy subjects further underwent a commonly used multi-echo spin-echo (MESE) sequence and magnetic resonance spectroscopy (MRS), respectively. RESULTS: T2 values derived from the T2-prepared TSE sequence were 44.6 ± 3.0 ms (left) and 44.5 ± 2.6 ms (right) in healthy subjects and showed good inter-reader reliability. In patients, T2 values of 61.5 ± 6.2 ms (affected side) versus 43.3 ± 2.4 ms (unaffected side) were obtained. T2 values of MRS were in good agreement with measurements from the T2-prepared TSE, but not with those of the MESE sequence. DISCUSSION: A T2-prepared TSE sequence enables precise determination of T2 values of the distal sciatic nerve in agreement with MRS. A MESE sequence tends to overestimate nerve T2 compared to T2 from MRS due to the influence of residual fat on T2 quantification. Our approach may enable to quantitatively assess direct nerve affection related to nerve compression.


Asunto(s)
Degeneración del Disco Intervertebral , Desplazamiento del Disco Intervertebral , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Nervio Ciático
9.
J Headache Pain ; 20(1): 8, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658563

RESUMEN

BACKGROUND: Research in migraine points towards central-peripheral complexity with a widespread pattern of structures involved. Migraine-associated neck and shoulder muscle pain has clinically been conceptualized as myofascial trigger points (mTrPs). However, concepts remain controversial, and the identification of mTrPs is mostly restricted to manual palpation in clinical routine. This study investigates a more objective, quantitative assessment of mTrPs by means of magnetic resonance imaging (MRI) with T2 mapping. METHODS: Ten subjects (nine females, 25.6 ± 5.2 years) with a diagnosis of migraine according to ICHD-3 underwent bilateral manual palpation of the upper trapezius muscles to localize mTrPs. Capsules were attached to the skin adjacent to the palpated mTrPs for marking. MRI of the neck and shoulder region was performed at 3 T, including a T2-prepared, three-dimensional (3D) turbo spin echo (TSE) sequence. The T2-prepared 3D TSE sequence was used to generate T2 maps, followed by manual placement of regions of interest (ROIs) covering the trapezius muscles of both sides and signal alterations attributable to mTrPs. RESULTS: The trapezius muscles showed an average T2 value of 27.7 ± 1.4 ms for the right and an average T2 value of 28.7 ± 1.0 ms for the left side (p = 0.1055). Concerning signal alterations in T2 maps attributed to mTrPs, nine values were obtained for the right (32.3 ± 2.5 ms) and left side (33.0 ± 1.5 ms), respectively (p = 0.0781). When comparing the T2 values of the trapezius muscles to the T2 values extracted from the signal alterations attributed to the mTrPs of the ipsilateral side, we observed a statistically significant difference (p = 0.0039). T2 hyperintensities according to visual image inspection were only reported in four subjects for the right and in two subjects for the left side. CONCLUSIONS: Our approach enables the identification of mTrPs and their quantification in terms of T2 mapping even in the absence of qualitative signal alterations. Thus, it (1) might potentially challenge the current gold-standard method of physical examination of mTrPs, (2) could allow for more targeted and objectively verifiable interventions, and (3) could add valuable models to understand better central-peripheral mechanisms in migraine.


Asunto(s)
Trastornos Migrañosos/diagnóstico por imagen , Músculos Superficiales de la Espalda/diagnóstico por imagen , Puntos Disparadores/diagnóstico por imagen , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Palpación , Adulto Joven
11.
Magn Reson Med ; 75(4): 1413-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25980525

RESUMEN

PURPOSE: Variable flip angle (VFA) T1 quantification using three-dimensional (3D) radiofrequency (RF) spoiled gradient echo imaging offers the acquisition of whole-brain T1 maps in clinically acceptable times. However, conventional VFA T1 relaxometry is biased by incomplete spoiling (i.e., residual T2 dependency). A new postprocessing approach is proposed to overcome this T2-related bias. METHODS: T1 is quantified from the signal ratio of two spoiled gradient echo (SPGR) images acquired at different flip angles using an analytical solution for the RF-spoiled steady-state signal in combination with a global T2 guess. T1 accuracy is evaluated from simulations and in vivo 3D SPGR imaging of the human brain at 3 Tesla. RESULTS: The simulations demonstrated that the sensitivity of VFA T1 mapping to T2 can considerably be reduced using a global T2 guess. The method proved to deliver reliable and accurate T1 values in vivo for white and gray matter in good agreement with inversion recovery reference measurements. CONCLUSION: Based on a global T2 estimate, the accuracy of VFA T1 relaxometry in the human brain can substantially be improved compared with conventional approaches which rely on the generally wrong assumption of ideal spoiling.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Humanos
12.
Radiology ; 270(1): 176-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23901126

RESUMEN

PURPOSE: To evaluate quantitative perfusion measurements of dynamic indocyanine green (ICG)-enhanced optical imaging for monitoring synovitis in the hands of patients with inflammatory arthritis compared with dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and clinical outcome. MATERIALS AND METHODS: This study was approved by the ethics committee at the institution. Individual joints (n = 840) in the hands and wrists of 28 patients (14 women; mean age, 53.3 years) with inflammatory arthritis were examined at three different time points: before start of therapy and 12 and 24 weeks after start of therapy or therapy escalation. Treatment response was assessed by using clinical measures (simple disease activity index [SDAI]), ICG-enhanced optical imaging, and DCE MR imaging. Dynamic images were obtained for optical imaging and DCE MR imaging. The rate of early enhancement (REE) of the perfusion curves of each joint was calculated by using in-house developed software. Correlation coefficients were estimated to evaluate the associations of changes of imaging parameters and SDAI change. RESULTS: Quantitative perfusion measurements with optical imaging and MR imaging correctly identified patients who responded (n = 18) and did not respond to therapy (n = 10), as determined by SDAI. The difference of REE after 24 weeks of treatment compared with baseline in responders was significantly reduced in optical imaging and MR imaging (optical imaging: mean, -21.5%; MR imaging: mean, -41.0%; P < .001 for both), while in nonresponders it was increased (optical imaging: mean, 10.8%; P = .075; MR imaging: mean, 8.7%; P = .03). The REE of optical imaging significantly correlated with MR imaging (ρ = 0.80; P < .001) and SDAI (ρ = 0.61; P < .001). CONCLUSION: Quantitative analysis of contrast-enhanced optical imaging allows for potential therapeutic monitoring of synovitis in patients with inflammatory arthritis.


Asunto(s)
Artritis Reumatoide/terapia , Mano , Imagen por Resonancia Magnética/métodos , Imagen Óptica/métodos , Sinovitis/diagnóstico , Sinovitis/terapia , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador , Verde de Indocianina , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Programas Informáticos , Resultado del Tratamiento
13.
Magn Reson Med ; 71(1): 230-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23553949

RESUMEN

PURPOSE: Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B0 ) and transmit (B1 ) field heterogeneities, and commonly biased by T2 /T1 . The purpose of this study is the development of a rapid T1 and T2 relaxometry method that is completely (T2 ) or partly (T1 ) bias-free. METHODS: A new method is introduced to simultaneously quantify T1 and T2 within one single scan based on a triple echo steady-state (TESS) approach in combination with an iterative golden section search. TESS relaxometry is optimized and evaluated from simulations, in vitro studies, and in vivo experiments. RESULTS: It is found that relaxometry with TESS is not biased by T2 /T1 , insensitive to B0 heterogeneities, and, surprisingly, that TESS-T2 is not affected by B1 field errors. Consequently, excellent correspondence between TESS and reference spin echo data is observed for T2 in vitro at 1.5 T and in vivo at 3 T. CONCLUSION: TESS offers rapid T1 and T2 quantification within one single scan, and in particular B1 -insensitive T2 estimation. As a result, the new proposed method is of high interest for fast and reliable high-resolution T2 mapping, especially of the musculoskeletal system at high to ultra-high fields.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Articulación de la Rodilla/anatomía & histología , Imagen por Resonancia Magnética/métodos , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Magn Reson Med ; 71(3): 1137-43, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23666766

RESUMEN

PURPOSE: In principle, double echo steady state (DESS) offers morphological and quantitative T2 imaging of cartilage within one single scan. However, accurate T2 estimation is hampered by its prominent T1 dependency in the limit of low flip angles, generally used to image cartilage morphology, as for the osteoarthritis initiative. A new postprocessing approach is introduced to overcome this T1-related bias for rapid DESS-based T2 quantification in the low flip angle regime. METHODS: Based on a rough global T1 estimator and a golden section search, T2 is extracted from the ratio of the two echoes acquired with DESS. The new relaxometry method is evaluated from simulations and in vivo 3D measurements of the knee joint at 3T. RESULTS: A pronounced reduction in the T1-related bias of DESS-T2 estimation and increased zonal variation in T2 between deep and superficial cartilage layers are observed. The improvement becomes particularly evident in the range of low flip angles (α < 45°), commonly used for morphological DESS imaging. CONCLUSION: Using a simple global T1 estimate, the reliability of DESS-T2 quantification can be considerably increased. The results emphasize the potential of DESS to fuse accurate quantitative T2 and morphological imaging of the musculoskeletal system within one single scan.


Asunto(s)
Cartílago Articular/anatomía & histología , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Articulación de la Rodilla/anatomía & histología , Algoritmos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Front Cardiovasc Med ; 11: 1352696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404725

RESUMEN

Background: Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) is a novel hybrid imaging method integrating the advances of morphological tissue characterization of MRI with the pathophysiological insights of PET applications. Aim: This study evaluated the use of simultaneous 18-FDG PET/MR imaging for characterizing atherosclerotic lesions in lower extremity arterial disease (LEAD). Methods: Eight patients with symptomatic stenoses of the superficial femoral artery (SFA) under simultaneous acquisition of 18-FDG PET and contrast-enhanced MRI using an integrated whole-body PET/MRI scanner. Invasive plaque characterization of the SFA was performed by intravascular imaging using optical coherence tomography. Histological analysis of plaque specimens was performed after directional atherectomy. Results: MRI showed contrast enhancement at the site of arterial stenosis, as assessed on T2-w and T1-w images, compared to a control area of the contralateral SFA (0.38 ± 0.15 cm vs. 0.23 ± 0.11 cm; 1.77 ± 0.19 vs. 1.57 ± 0.15; p-value <0.05). On PET imaging, uptake of 18F-FDG (target-to-background ratio TBR > 1) at the level of symptomatic stenosis was observed in all but one patient. Contrast medium-induced MR signal enhancement was detected in all plaques, whereas FDG uptake in PET imaging was increased in lesions with active fibroatheroma and reduced in fibrocalcified lesions. Conclusion: In this multimodal imaging study, we report the feasibility and challenges of simultaneous PET/MR imaging of LEAD, which might offer new perspectives for risk estimation.

16.
Magn Reson Med ; 70(6): 1515-23, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23382026

RESUMEN

PURPOSE: A novel B1+-mapping technique (B1-TRAP) is presented, which derives the actual flip angle from the frequency of signal oscillations, observed in the transient phase of unbalanced steady-state free precession sequences. THEORY: For short repetition times (TR), the angular frequency of distinct oscillations in the transient phase of steady-state free precession sequences is proven to be approximately proportional to the actual flip angle: ω⋅TR≈α. The result is not influenced by off-resonance and it can be shown that deviations are only of second order in the small parameter TR/T2. METHODS: B1-TRAP makes use of this effect through a frequency analysis of the transient phase of a train of steady-state free precession signals. RESULTS: In terms of reliability and time efficiency, a two-dimensional multislice implementation was found to be optimal. Unlike many steady-state B1+-mapping methods, the accuracy of B1-TRAP was not impaired by imperfect slice profiles. CONCLUSION: Simulations, phantom, and in vivo measurements showed that B1-TRAP offers a good compromise with respect to speed, robustness, and accuracy.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Arthritis Rheum ; 64(8): 2489-98, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22421978

RESUMEN

OBJECTIVE: To prospectively compare an indocyanine green (ICG)-enhanced optical imaging system with contrast-enhanced magnetic resonance imaging (MRI) for the detection of synovitis in the hands of patients with rheumatologic disorders. METHODS: Forty-five patients (30 women [67%], mean ± SD age 52.6 ± 13.4 years) in whom there was a clinical suspicion of an inflammatory arthropathy were examined with a commercially available device for ICG-enhanced optical imaging as well as by contrast-enhanced 3T MRI as the standard of reference. Three independent readers graded the degree of synovitis in the carpal, metacarpophalangeal, proximal interphalangeal, and distal interphalangeal joints of both hands (1,350 joints), using a 4-point ordinate scale (0 = no synovitis, 1 = mild, 2 = moderate, 3 = severe). Statistical analyses were performed using a logistic generalized estimating equation approach. Agreement of optical imaging ratings made by the different readers was estimated with a weighted kappa coefficient. RESULTS: When MRI was used as the standard of reference, optical imaging showed a sensitivity of 39.6% (95% confidence interval [95% CI] 31.1-48.7%), a specificity of 85.2% (95% CI 79.5-89.5%), and accuracy of 67.0% (95% CI 61.4-72.1%) for the detection of synovitis in patients with arthritis. Diagnostic accuracy was especially limited in the setting of mild synovitis, while it was substantially better in patients with severely inflamed joints. Moderate interreader and intrareader agreement was observed. CONCLUSION: The evaluated ICG-enhanced optical imaging system showed limitations for the detection of inflamed joints of the hand in comparison with MRI.


Asunto(s)
Diagnóstico por Imagen/métodos , Articulaciones de la Mano/patología , Imagen por Resonancia Magnética/métodos , Dispositivos Ópticos , Enfermedades Reumáticas/complicaciones , Sinovitis/diagnóstico , Sinovitis/patología , Adulto , Anciano , Articulaciones del Carpo/patología , Femenino , Articulaciones de los Dedos/patología , Humanos , Verde de Indocianina , Masculino , Articulación Metacarpofalángica/patología , Persona de Mediana Edad , Variaciones Dependientes del Observador , Estudios Prospectivos , Sensibilidad y Especificidad , Sinovitis/etiología
18.
Magn Reson Med ; 68(3): 720-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22161749

RESUMEN

Single-shot echo-planar imaging techniques are commonly used for diffusion-weighted imaging (DWI) but offer rather poor spatial resolution and field-of-view coverage for species with short T(2) . In contrast, steady-state free precession (SSFP) has shown promising results for DWI of the musculoskeletal system, but quantification is generally hampered by its prominent sensitivity on relaxation times. In this work, a new and truly diffusion-weighted (that is relaxation time independent) SSFP DWI technique is introduced using a double-echo steady-state approach. Within this framework (and this is in contrast to common SSFP DWI techniques using SSFP-Echo) both primary echo paths of nonbalanced SSFP are acquired, namely the FID and the Echo. Simulations and in vitro measurements reveal that the ratio of the Echo/FID signal ratios of two double-echo steady-state scans acquired with and without diffusion sensitizing dephasing moments provides a highly relaxation independent quantity for diffusion quantification. As a result, relaxation-independent high-resolution (0.4 × 0.4 - 0.6 × 0.6 mm(2) in-plane resolution) quantitative in vivo SSFP DWI is demonstrated for human articular cartilage using diffusion-weighted double-echo steady-state scans in the knee and ankle joint at 3.0 T. The derived diffusion coefficients for cartilage (D ∼ 1.0-1.5 µm(2) /ms) and synovial fluid (D ∼ 2.6 µm(2) /ms) are in agreement with previous work.


Asunto(s)
Algoritmos , Cartílago Articular/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Articulación de la Rodilla/anatomía & histología , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Magn Reson Med ; 68(5): 1586-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22246991

RESUMEN

In general, MR image contrast is expected to be resolution independent, but a pronounced loss of contrast is observed between fluids and tissues with contemporary musculoskeletal protocols (typical inplane resolution << 1 mm) using nonbalanced steady-state free precession, such as double echo steady state. For nonbalanced steady-state free precession, diffusion sensitivity increases with increasing spoiler moments which increase with decreasing voxel size, suggesting diffusion damping as the major cause for the observed contrast variation. This is confirmed by simulations and measurements indicating that for fluids, diffusion effects become apparent already for resolutions Δx < 1 mm, whereas tissues typically require Δx < 200 µm. Gradient spoiling, however, is generically not minimized but frequently applied along the readout direction. For anisotropic steady-state free precession scans, the loss of contrast between fluids and tissues from diffusion can thus be minimized by simply moving the spoiler gradients to the lowest resolution direction.


Asunto(s)
Algoritmos , Cartílago Articular/anatomía & histología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Magn Reson Med ; 66(2): 410-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21394766

RESUMEN

Fast quantitative MRI has become an important tool for biochemical characterization of tissue beyond conventional T1, T2, and T2*-weighted imaging. As a result, steady-state free precession (SSFP) techniques have attracted increased interest, and several methods have been developed for rapid quantification of relaxation times using steady-state free precession. In this work, a new and fast approach for T2 mapping is introduced based on partial RF spoiling of nonbalanced steady-state free precession. The new T2 mapping technique is evaluated and optimized from simulations, and in vivo results are presented for human brain at 1.5 T and for human articular cartilage at 3.0 T. The range of T2 for gray and white matter was from 60 msec (for the corpus callosum) to 100 msec (for cortical gray matter). For cartilage, spatial variation in T2 was observed between deep (34 msec) and superficial (48 msec) layers, as well as between tibial (33 msec), femoral, (54 msec) and patellar (43 msec) cartilage. Excellent correspondence between T2 values derived from partially spoiled SSFP scans and the ones found with a reference multicontrast spin-echo technique is observed, corroborating the accuracy of the new method for proper T2 mapping. Finally, the feasibility of a fast high-resolution quantitative partially spoiled SSFP T2 scan is demonstrated at 7.0 T for human patellar cartilage.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Cartílago Articular/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA