Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rep Prog Phys ; 87(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608453

RESUMEN

Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.

2.
Clin Immunol ; 265: 110300, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950722

RESUMEN

A comprehensive analysis of spatial transcriptomics was carried out to better understand the progress of halo nevus. We found that halo nevus was characterized by overactive immune responses, triggered by chemokines and dendritic cells (DCs), T cells, and macrophages. Consequently, we observed abnormal cell death, such as apoptosis and disulfidptosis in halo nevus, some were closely related to immunity. Interestingly, we identified aberrant metabolites such as uridine diphosphate glucose (UDP-G) within the halo nevus. UDP-G, accompanied by the infiltration of DCs and T cells, exhibited correlations with certain forms of cell death. Subsequent experiments confirmed that UDP-G was increased in vitiligo serum and could activate DCs. We also confirmed that oxidative response is an inducer of UDP-G. In summary, the immune response in halo nevus, including DC activation, was accompanied by abnormal cell death and metabolites. Especially, melanocyte-derived UDP-G may play a crucial role in DC activation.

3.
Phys Rev Lett ; 132(4): 048201, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335345

RESUMEN

Crystallization on spherical surfaces is obliged by topology to induce lattice defects. But controlling the organization of such defects remains a great challenge due to the long-range constraints of the curved geometry. Here, we report on DNA-coated colloids whose programmable interaction potentials can be used to regulate the arrangement of defects and even achieve perfect icosahedral order on a sphere. Combined simulations and theoretical analysis show how the potential can be tuned by changing the temperature, thereby controlling the number of defects. An explicit expression for the effective potential is derived, allowing us to distinguish the effects of entropic repulsion and enthalpic attraction. Altogether, the present findings provide insights into the physics of crystallization on curved spaces and may be used for designing desired crystal geometries.

4.
Mol Pharm ; 21(1): 346-357, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015620

RESUMEN

To overcome the limitations of traditional platinum (Pt)-based drugs and further improve the targeting ability and therapeutic efficacy in vivo, we proposed to design a human serum albumin (HSA)-Pt agent complex nanoparticle (NP) for cancer treatment by multimodal action against the tumor microenvironment. We not only synthesized a series of Pt(II) di-2-pyridone thiosemicarbazone compounds and obtained a Pt(II) agent [Pt(Dp44mT)Cl] with significant anticancer activity but also successfully constructed a novel HSA-Pt(Dp44mT) complex nanoparticle delivery system. The structure of the HSA-Pt(Dp44mT) complex revealed that Pt(Dp44mT)Cl binds to the IIA subdomain of HSA and coordinates with His-242. The HSA-His242-Pt-Dp44mT NPs had an obvious effect on the inhibition of tumor growth, which was superior to that of Dp44mT and Pt(Dp44mT)Cl, and they had almost no toxicity. In addition, the HSA-His242-Pt-Dp44mT NPs were found to kill cancer cells by inducing apoptosis, autophagy, and inhibiting angiogenesis.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Albúmina Sérica Humana/química , Platino (Metal) , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/química , Línea Celular Tumoral
5.
Chem Soc Rev ; 52(19): 6806-6837, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37743794

RESUMEN

Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.

6.
Nano Lett ; 23(3): 1109-1118, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36716197

RESUMEN

Understanding physicochemical interactions and mechanisms related to the cell membranes of lives under extreme conditions is of essential importance but remains scarcely explored. Here, using a combination of computer simulations and experiments, we demonstrate that the structural integrity and controllable permeability of cell membranes at high temperatures are predominantly directed by configurational entropy emerging from distorted intermolecular organization of bipolar tethered lipids peculiar to the extremophiles. Detailed simulations across multiple scales─from an all-atom exploration of molecular mechanism to a mesoscale examination of its universal nature─suggest that this configurational entropy effect can be generalized to diverse systems, such as block copolymers. This offers biomimetic inspiration for designing heat-tolerant materials based on entropy, as validated by our experiments of synthetic polymers. The findings provide new insight into the basic nature of the mechanism underlying the adaptation of organisms to extreme conditions and might open paths for designed materials inspired by entropic effects in biological systems.


Asunto(s)
Extremófilos , Entropía , Simulación por Computador , Membrana Celular
7.
J Transl Med ; 21(1): 212, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949448

RESUMEN

BACKGROUND: COVID-19, the current global pandemic caused by SARS-CoV-2 infection, can damage the heart and lead to heart failure (HF) and even cardiac death. The 2',5'-oligoadenylate synthetase (OAS) gene family encode interferon (IFN)-induced antiviral proteins which is associated with the antiviral immune responses of COVID-19. While the potential association of OAS gene family with cardiac injury and failure in COVID-19 has not been determined. METHODS: The expression levels and biological functions of OAS gene family in SARS-CoV-2 infected cardiomyocytes dataset (GSE150392) and HF dataset (GSE120852) were determined by comprehensive bioinformatic analysis and experimental validation. The associated microRNAs (miRNAs) were explored from Targetscan and GSE104150. The potential OAS gene family-regulatory chemicals or ingredients were predicted using Comparative Toxicogenomics Database (CTD) and SymMap database. RESULTS: The OAS genes were highly expressed in both SARS-CoV-2 infected cardiomyocytes and failing hearts. The differentially expressed genes (DEGs) in the two datasets were enriched in both cardiovascular disease and COVID-19 related pathways. The miRNAs-target analysis indicated that 10 miRNAs could increase the expression of OAS genes. A variety of chemicals or ingredients were predicted regulating the expression of OAS gene family especially estradiol. CONCLUSION: OAS gene family is an important mediator of HF in COVID-19 and may serve as a potential therapeutic target for cardiac injury and HF in COVID-19.


Asunto(s)
COVID-19 , Insuficiencia Cardíaca , MicroARNs , Humanos , COVID-19/complicaciones , COVID-19/genética , SARS-CoV-2 , Insuficiencia Cardíaca/genética , Antivirales , MicroARNs/genética
8.
Exp Dermatol ; 32(4): 511-520, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36620869

RESUMEN

Keratinocytes regulate melanogenesis in a paracrine manner. Previous studies have shown that melatonin can directly inhibit melanin production in the melanocytes. However, it is unclear whether melatonin can also indirectly regulate melanogenesis through the keratinocytes. In this study, we explored the role of melatonin in regulating keratinocyte-mediated melanogenesis using reconstructed human epidermis (RHE). Melatonin showed an inhibitory effect on melanin synthesis in this model. Furthermore, the conditioned media from melatonin-treated HaCaT cells downregulated melanogenesis-related genes, including MITF, TYR, TYRP1, DCT and RAB27A in the pigment MNT1 cells, and decreased levels of phosphorylated ERK, JNK and p38. RNA sequencing further showed that mitochondrial functions and oxidative stress pathway in the MNT1 cells were inhibited by the conditioned medium from melatonin-treated HaCaT cells. Furthermore, melatonin reduced the secretion of ET-1 and PTGS2 from HaCaT cells by inhibiting the JAK2/STAT3 signalling pathway. In conclusion, melatonin downregulates the paracrine factors ET-1 and PTGS2 in the keratinocytes by inhibiting the JAK2/STAT3 pathway, which reduces melanin production in pigment cells. Thus, melatonin has a potential therapeutic effect on skin pigmentation disorders.


Asunto(s)
Melaninas , Melatonina , Humanos , Melaninas/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Ciclooxigenasa 2/metabolismo , Queratinocitos/metabolismo , Melanocitos/metabolismo , Monofenol Monooxigenasa/metabolismo
9.
BMC Cancer ; 23(1): 878, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723418

RESUMEN

Colorectal cancer (CRC) is one of the malignant tumors with the highest morbidity and mortality and poor prognosis. The mammalian gene family of Cab45/reticulocalbin/ERC-45/calumenin (CREC) consists of RCN1, RCN2, RCN3, SDF4 and CALU. Although CREC family members have been associated with CRC, the expression pattern, prognostic value, and the role of CREC family in CRC remain unclear. In this study, the expression, survival and biological functions of CREC family in CRC were determined via bioinformatic datasets analysis and experimental verification on clinical CRC specimen. Bioinformatic analysis showed that the expression levels of most CREC family genes were higher in CRC tissues than in normal colorectal tissues. The qPCR and western blot results also revealed that the transcriptional and protein levels of CREC family were elevated in CRC tissues compared with adjacent tissues. Besides, CREC family was significantly correlated with advanced tumor stage and poor prognosis of CRC patients. The expression levels of CREC family had correlations with genomic mutation and methylation, and with the infiltration levels of CD4 + T cells, macrophages, neutrophils, and dendritic cells in the microenvironment of CRC. Functional networks enrichment analysis indicated that the genes of CREC family were essential factors for CRC metastasis. Collectively, these findings suggest that CREC family might be potential targets for the treatment of CRC and candidate prognostic markers for CRC patients.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias Colorrectales , Animales , Humanos , Pronóstico , Western Blotting , Biología Computacional , Neoplasias Colorrectales/genética , Mamíferos , Microambiente Tumoral , Proteínas de Unión al Calcio
10.
J Sep Sci ; 46(16): e2300160, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269050

RESUMEN

Siegesbeckiae Herba, a traditional Chinese medicine, originates from Siegesbeckia orientalis, S. glabrescens, and S. pubescens in the Pharmacopoeia of the People's Republic of China. However, accurate identification of decoction pieces from the three plants remains a challenge. In this study, 26 batches of Siegesbeckiae Herba were identified by deoxyribonucleic acid barcoding, and their chemical compositions were determined using ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry. The results showed that the internal transcribed spacer 2 and internal transcribed spacer 1-5.8 S- internal transcribed spacer 2 sequences could distinguish three species. In total, 48 compounds were identified including 12 marker compounds screened for three species using the partial least square discriminant analysis. Among these, two diterpenoids 16-O-malonylkirenol and 15-O-malonylkirenol, and a novel diterpenoid 15,16-di-O-malonylkirenol were isolated and identified. A convenient method for the identification of Siegesbeckiae Herba was established using kirenol and 16-O-acetlydarutoside as control standards by thin-layer chromatography. Unexpectedly, none of the batches of S. orientalis contained kirenol, which did not meet the quality standards of Siegesbeckiae Herba, suggesting that the rationality of kirenol as a quality marker for S. orientalis should be further investigated. The results of this study will contribute to the quality control of Siegesbeckiae Herba.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Medicamentos Herbarios Chinos/química , Cromatografía Liquida/métodos , ADN , Cromatografía Líquida de Alta Presión/métodos
11.
Sensors (Basel) ; 23(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37420806

RESUMEN

Soil dust generated by explosions can lead to the absorption and scattering of lasers, resulting in low detection and recognition accuracy for laser-based devices. Field tests to assess laser transmission characteristics in soil explosion dust are dangerous and involve uncontrollable environmental conditions. Instead, we propose using high-speed cameras and an indoor explosion chamber to assess the backscattering echo intensity characteristics of lasers in dust generated by small-scale explosive blasts in soil. We analyzed the influence of the mass of the explosive, depth of burial, and soil moisture content on crater features and temporal and spatial distributions of soil explosion dust. We also measured the backscattering echo intensity of a 905 nm laser at different heights. The results showed that the concentration of soil explosion dust was highest in the first 500 ms. The minimum normalized peak echo voltage ranged from 0.318 to 0.658. The backscattering echo intensity of the laser was found to be strongly correlated with the mean gray value of the monochrome image of soil explosion dust. This study provides experimental data and a theoretical basis for the accurate detection and recognition of lasers in soil explosion dust environments.


Asunto(s)
Polvo , Explosiones , Polvo/análisis , Suelo , Rayos Láser
12.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446717

RESUMEN

Quzhou Aurantii Fructus (QAF), the dried immature fruit of Citrus changshan-huyou Y.B. Chang, is similar to Aurantii Fructus (AF), the dried immature fruit of Citrus aurantium L. or its cultivars, in terms of composition, pharmacological action, and appearance. However, potential chemical markers to distinguish QAF from AF remain unknown owing to the lack of a comprehensive systematic chemical comparison aligned with discriminant analysis. To achieve a better understanding of the differences in their composition, this study aimed to identify the basic chemical compounds in QAF (n = 42) and AF (n = 8) using ultra-performance liquid chromatography coupled with electron spray ionization and quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and gas chromatography coupled with mass spectrometry (GC-MS). Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were used to further analyze, screen, and verify potential chemical markers; the antioxidant capacity was assayed in vitro. A total of 108 compounds were found in QAF and AF, including 25 flavonoids, 8 limonoids, 2 coumarins, and 73 volatile components. The chemometric analysis indicated that the main components in QAF and AF were very similar. Trace differential components, including 9 flavonoids, 2 coumarins, 5 limonoids, and 26 volatile compounds, were screened as potential chemical markers to distinguish between QAF and AF. Additionally, the antioxidant capacity of QAF was found to be greater than that of AF. This research provides insights into the quality control and clinical application of QAF.


Asunto(s)
Citrus , Limoninas , Citrus/química , Antioxidantes/farmacología , Antioxidantes/análisis , Frutas/química , Limoninas/análisis , Flavonoides/química , Cumarinas/química , Cromatografía Líquida de Alta Presión/métodos
13.
J Transl Med ; 20(1): 392, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36059026

RESUMEN

BACKGROUND: Fibroproliferative repair starts early in the inflammatory phase of acute respiratory distress syndrome (ARDS) and indicates a poor prognosis. Lumican, a small leucine-rich proteoglycan, is implicated in homeostasis and fibrogenesis, but its role in ARDS is unclear. METHODS: Bronchoalveolar lavage fluid (BALF) samples were obtained from ARDS patients (n = 55) enrolled within 24 h of diagnosis and mechanically ventilated (n = 20) and spontaneously breathing (n = 29) control subjects. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse models were intratracheally administered an adeno-associated virus (AAV) vector expressing lumican shRNA. Primary human lung fibroblasts (HLF) and small airway epithelial cells (SAECs) were cultured with tumour necrosis factor (TNF)-α or lumican. Luminex/ELISA, histochemistry/immunohistochemistry, immunofluorescence microscopy, quantitative real-time PCR, and western blotting were performed. RESULTS: Lumican levels were significantly higher in the BALF of ARDS patients than in that of ventilated or spontaneously breathing controls (both p < 0.0001); they were correlated with the PaO2/FiO2 ratio and levels of proinflammatory cytokines (interleukin-6, interleukin-8, and TNF-α) and profibrotic factors (fibronectin, alpha-1 type I collagen [COL1A1], and alpha-1 type III collagen [COL3A1]). Lumican expression was enhanced in the alveolar walls and airway epithelium in the ALI mouse model. Murine lumican levels were also linked to proinflammatory and profibrotic cytokine levels in the BALF. In vitro, TNF-α induced the synthesis and secretion of lumican in HLF. In turn, lumican increased the expression of alpha-smooth muscle actin (α-SMA), COL1A1, and COL3A1 in HLF, upregulated α-SMA and COL3A1, downregulated E-cadherin, and caused spindle-shaped morphological changes in SAECs. Moreover, increased ERK phosphorylation and Slug were noted in both HLF and SAECs treated with lumican. In vivo, AAV-mediated knockdown of lumican inhibited the pulmonary production of fibronectin and COL3A1 and alleviated lung fibrotic lesions in LPS-challenged mice. CONCLUSIONS: Pulmonary lumican levels were increased early in human and experimental ARDS and linked to disease severity and inflammatory fibrotic processes. Lumican triggers the transdifferentiation of lung fibroblasts into myofibroblasts and epithelial-mesenchymal transition in SAECs, possibly via the ERK/Slug pathway. Knockdown of pulmonary lumican attenuated extracellular matrix deposition in ALI mice. Overall, lumican promotes fibrotic responses in the early phase of ARDS, suggesting its potential as a therapeutic target.


Asunto(s)
Lesión Pulmonar Aguda , Lumican/metabolismo , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibronectinas , Fibrosis , Humanos , Lipopolisacáridos/metabolismo , Pulmón/patología , Ratones , Síndrome de Dificultad Respiratoria/patología , Factor de Necrosis Tumoral alfa/metabolismo
14.
Appl Environ Microbiol ; 88(2): e0183721, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731049

RESUMEN

Cytophaga hutchinsonii is an abundant soil cellulolytic bacterium that uses a unique cellulose degradation mechanism different from those that involve free cellulases or cellulosomes. Though several proteins have been identified as important for cellulose degradation, the mechanism used by C. hutchinsonii to digest crystalline cellulose remains a mystery. In this study, chu_0922 was identified by insertional mutation and gene deletion as an important gene locus indispensable for crystalline cellulose utilization. Deletion of chu_0922 resulted in defects in crystalline cellulose utilization. The Δ0922 mutant completely lost the ability to grow on crystalline cellulose, even with extended incubation, and selectively utilized the amorphous region of cellulose, leading to increased crystallinity. As a protein secreted by the type IX secretion system (T9SS), CHU_0922 was found to be located on the outer membrane, and the outer membrane localization of CHU_0922 relied on the T9SS. Comparative analysis of the outer membrane proteins revealed that the abundance of several cellulose-binding proteins, including CHU_1276, CHU_1277, and CHU_1279, was reduced in the Δ0922 mutant. Further study showed that CHU_0922 is crucial for the full expression of the gene cluster containing chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which is essential for cellulose utilization. Moreover, CHU_0922 is required for the cell surface localization of CHU_3220, a cellulose-binding protein that is essential for crystalline cellulose utilization. Our study provides insights into the complex system that C. hutchinsonii uses to degrade crystalline cellulose. IMPORTANCE The widespread aerobic cellulolytic bacterium Cytophaga hutchinsonii, belonging to the phylum Bacteroidetes, utilizes a novel mechanism to degrade crystalline cellulose. No genes encoding proteins specialized in loosening or disruption the crystalline structure of cellulose were identified in the genome of C. hutchinsonii, except for chu_3220 and chu_1557. The crystalline cellulose degradation mechanism remains enigmatic. This study identified a new gene locus, chu_0922, encoding a typical T9SS substrate that is essential for crystalline cellulose degradation. Notably, CHU_0922 is crucial for the normal transcription of chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which play important roles in the degradation of cellulose. Moreover, CHU_0922 participates in the cell surface localization of CHU_3220. These results demonstrated that CHU_0922 plays a key role in the crystalline cellulose degradation network. Our study will promote the uncovering of the novel cellulose utilization mechanism of C. hutchinsonii.


Asunto(s)
Proteínas Portadoras , Celulosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Celulosa/metabolismo , Cytophaga/genética , Cytophaga/metabolismo
15.
Invest New Drugs ; 40(2): 370-388, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34837604

RESUMEN

The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.


Asunto(s)
Glioma , Proteínas Hedgehog , Glioma/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Células Madre Neoplásicas/patología , Oncogenes , Transducción de Señal/fisiología
16.
BMC Cancer ; 22(1): 1016, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36162993

RESUMEN

BACKGROUND: Bladder cancer (BLCA) is one of the most common genitourinary malignancies in the world, but its pathogenic genes have not been fully identified and the treatment outcomes are still unsatisfactory. Although the members of 2', 5'-oligoadenylate synthetase (OAS) gene family are known involved in some tumorous biological processes, the roles of the OAS gene family in BLCA are still undetermined. METHODS: By combining vast bioinformatic datasets analyses of BLCA and the experimental verification on clinical BLCA specimen, we identified the expressions and biological functions of OAS gene family members in BLCA with comparison to normal bladder tissues. RESULTS: The expression levels of OAS gene family members were higher in BLCA than in normal bladder tissues. The expression levels of most OAS genes had correlations with genomic mutation and methylation, and with the infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and dendritic cells in the microenvironment of BLCA. In addition, high expressions of OAS1, OAS2, OAS3, and OASL predicted better overall survival in BLCA patients. CONCLUSIONS: The highly expressed OAS genes in BLCA can reflect immune cells infiltration in the tumor microenvironment and predict the better overall survival of BLCA, and thus may be considered as a signature of BLCA. The study provides new insights into the diagnosis, treatment, and prognosis of BLCA.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Neoplasias de la Vejiga Urinaria , 2',5'-Oligoadenilato Sintetasa/genética , Nucleótidos de Adenina , Humanos , Ligasas , Oligorribonucleótidos , Pronóstico , Microambiente Tumoral/genética , Neoplasias de la Vejiga Urinaria/genética
17.
Genet Res (Camb) ; 2022: 8429207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062065

RESUMEN

Background: Assays of transposase accessible chromatin sequencing (ATAC-seq) is an efficient assay to investigate chromatin accessibility, which depends on the activity of a robust Tn5 transposase to fragment the genome while cutting in the sequencing adapters. Methods: We propose reliable approaches for purifying hyperactive Tn5 transposase by chitin magnetic bead sorting. Double-stranded DNA of J76 cells and 293T cells were digested and subjected to tagmentation as test samples with Tn5 transposase, and libraries were established and sequenced. Sequencing data was then analyzed for peak calling, GO enrichment, and motif analysis. Results: We report a set of rapid, efficient, and low-cost methods for ATAC-seq library construction and data analysis, through large-scale and rapid sequencing. These methods can provide a reference for the study of epigenetic regulation of gene expression.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Cromatina/genética , Epigénesis Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Tecnología , Transposasas/genética , Transposasas/metabolismo
18.
Langmuir ; 38(37): 11137-11148, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36070512

RESUMEN

Understanding the behaviors of nanoparticles at interfaces is crucial not only for the design of novel nanostructured materials with superior properties but also for a better understanding of many biological systems where nanoscale objects such as drug molecules, viruses, and proteins can interact with various interfaces. Theoretical studies and tailored computer simulations offer unique approaches to investigating the evolution and formation of structures as well as to determining structure-property relationships regarding the interfacial nanostructures. In this feature article, we summarize our efforts to exploit computational approaches as well as theoretical modeling in understanding the organization of nanoscale objects at the interfaces of various systems. First, we present the latest research advances and state-of-the-art computational techniques for the simulation of nanoparticles at interfaces. Then we introduce the applications of multiscale modeling and simulation methods as well as theoretical analysis to explore the basic science and the fundamental principles in the interfacial nanoparticle organization, covering the interfaces of polymer, nanoscience, biomacromolecules, and biomembranes. Finally, we discuss future directions to signify the framework in tailoring the interfacial organization of nanoparticles based on the computational design. This feature article could promote further efforts toward fundamental research and the wide applications of theoretical approaches in designing interfacial assemblies for new types of functional nanomaterials and beyond.


Asunto(s)
Nanopartículas , Nanoestructuras , Simulación por Computador , Modelos Teóricos , Nanopartículas/química , Nanoestructuras/química , Polímeros/química
19.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 213-220, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35988186

RESUMEN

Nano-carbon is often used as a tracer in thyroidectomy, to improve the accuracy of the operation. Remifentanil is the most commonly used anesthetic during thyroidectomy, but the use of remifentanil can sometimes cause patients with anesthesia hyperalgesia. Therefore, auxiliary anesthetics are often used in surgery to prevent remifentanil from causing anesthesia hyperalgesia. The purpose of this article is to explore the specific application effect of the fusion agent of hydromorphone and parecoxib sodium after thyroidectomy based on nano-carbon in the prevention of remifentanil-induced anesthesia hyperalgesia. Taking 60 patients who underwent thyroidectomy based on carbon nanotechnology in our hospital as the research object, the patients were divided into the parecoxib sodium group, hydromorphone control group and hydromorphone and parecoxib sodium fusion agent group. All patients were injected with remifentanil before surgery for general paralysis. Ten minutes before the end of the operation, the parecoxib sodium group was injected with quantitative parecoxib sodium, and the hydromorphone control group was injected with quantitative hydromorphone, hydromorphone and the parecoxib sodium fusion medicament group was injected with a quantitative combination of parecoxib sodium and hydromorphone. The patient's comfort, calmness, pain, adverse reactions and recovery time of consciousness were counted. The results of the study showed that the sedation score of the hydromorphone and parecoxib sodium fusion drug group was (15.8±1.5), the pain degree score was (1.9±0.5), lower than the other two groups, and the postoperative recovery time was (38±5.0) )min, lower than the other two groups. It can be seen that the use of a fusion agent of hydromorphone and parecoxib sodium after thyroidectomy based on nano-carbon is effective in preventing and reducing remifentanil-induced anesthesia hyperalgesia.


Asunto(s)
Anestesia , Hiperalgesia , Analgésicos Opioides/efectos adversos , Humanos , Hidromorfona/uso terapéutico , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/prevención & control , Isoxazoles , Dolor/inducido químicamente , Piperidinas/uso terapéutico , Remifentanilo/efectos adversos , Tiroidectomía/efectos adversos
20.
Environ Res ; 210: 112937, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157918

RESUMEN

The high-throughput production of the eco-friendly MIL-88A(Fe) was achieved under mild reaction conditions with normal pressure and temperature. The as-prepared MIL-88A(Fe) exhibited efficient photo-Fenton catalytic ofloxacin (OFL) degradation upon visible light irradiation with good stability and reusability. The OFL (20.0 mg/L) was completely degraded within 50 min under visible light with the aid of MIL-88A(Fe) (0.25 g/L) and H2O2 (1.0 mL/L) in aqueous solution (pH = 7.0). The hydroxyl radicals (·OH) are the main active species during the photo-Fenton oxidation process. Meanwhile, the degradation intermediates and the corresponding degradation pathways were identified and proposed with the aid of both ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and density functional theory (DFT) calculations. Finally, the degradation product library was firstly established to identify intermediate transformation products (TPs) with their variation of concentration, and their corresponding toxicologic activities were assessed via Toxtree and T.E.S.T software as well. Finally, the MIL-88A is efficient and stable with four cycles' catalysis operations, demonstrating good potential for water treatment.


Asunto(s)
Ofloxacino , Purificación del Agua , Catálisis , Peróxido de Hidrógeno/química , Ofloxacino/toxicidad , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA