Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814866

RESUMEN

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Transformación Celular Neoplásica , Clorhidrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ratones , Clorhidrato de Erlotinib/farmacología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Vía de Señalización Wnt/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Transcripción Genética , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina
2.
Toxicol Appl Pharmacol ; 483: 116807, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199493

RESUMEN

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , ARN Mensajero/metabolismo
3.
Drug Resist Updat ; 57: 100770, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34175687

RESUMEN

The cytotoxic anti-cancer drugs cisplatin, paclitaxel, doxorubicin, 5-fluorouracil (5-FU), as well as targeted drugs including imatinib, erlotinib, and nivolumab, play key roles in clinical cancer treatment. However, the frequent emergence of drug resistance severely comprosises their anti-cancer efficacy. A number of studies indicated that loss of function of tumor suppressor genes (TSGs) is involved in the development of cancer drug resistance, apart from decreased drug influx, increased drug efflux, induction of anti-apoptosis mechanisms, alterations in tumor microenvironment, drug compartmentalization, enhanced DNA repair and drug inactivation. TSGs are involved in the pathogenesis of tumor formation through regulation of DNA damage repair, cell apoptosis, autophagy, proliferation, cell cycle progression, and signal transduction. Our increased understanding of TSGs in the past decades demonstrates that gene mutation is not the only reason that leads to the inactivation of TSGs. Loss of function of TSGs may be based on the ubiquitin-proteasome pathway, epigenetic and transcriptional regualtion, post-translation modifications like phosphorylation as well as cellular translocation of TSGs. As the above processes can constitute"druggable targets", these mechanisms provide novel therapeutic approaches in targeting TSGs. Some small molecule compounds targeting these approaches re-activated TSGs and reversed cancer drug resistance. Along this vein, functional restoration of TSGs is a novel and promising approach to surmount cancer drug resistance. In the current review, we draw a scenario based on the role of loss of function of TSGs in drug resistance, on mechanisms leading to inactivation of TSGs and on pharmacological agents acting on these mechanisms to overcome cancer drug resistance. This review discusses novel therapeutic strategies targeting TSGs and offers possible modalities to conquer cancer drug resistance.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/fisiología , Genes Supresores de Tumor/efectos de los fármacos , Genes Supresores de Tumor/fisiología , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Apoptosis/fisiología , Reparación del ADN/fisiología , Humanos , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
4.
Neurochem Res ; 45(11): 2703-2711, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32892226

RESUMEN

Kukoamine (KuA) is a spermine alkaloid present in traditional Chinese medicine Cortex Lycii radices, which possesses various pharmacological properties. Our previous studies have demonstrated that KuA exerts neuroprotective effects against H2O2-induced oxidative stress, radiation-induced neuroinflammation, oxidative stress and neuronal apoptosis, as well as neurotoxin-induced Parkinson's disease through apoptosis inhibition and autophagy enhancement. The present study aimed to investigate the neuroprotective effects of KuA against NMDA-induced neuronal injury in cultured primary cortical neurons and explore the underlying mechanism. Incubation with 200 µM NMDA for 30 min induced excitotoxicity in primary cultured cortical neurons. The results demonstrated that pretreatment with KuA attenuated NMDA induced cell injury, LDH leakage and neuronal apoptosis. KuA also regulated apoptosis-related proteins. Thus, incubation with the alkaloid decreased the ratio of Bax/Bcl-2, and inhibited the release of cytochrome C, the expression of p53 and the cleavage of caspase-3. Moreover, KuA prevented the upregulation of GluN2B-containing NMDA receptors (NMDAR). Additionally, pretreatment with KuA reversed NMDA-induced dephosphorylation of Akt and GSK-3ß and the protective effect of KuA on NMDA-induced cytotoxicity was abolished by wortmannin, a PI3K inhibitor. Taken together, these results indicated that KuA exerted neuroprotective effects against NMDA-induced neurotoxicity in cultural primary cortical neurons and caused the down-regulation of GluN2B-containing NMDARs as well as the phosphorylation of proteins belonging to the PI3K/Akt/GSK-3ß signaling pathway.


Asunto(s)
N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Espermina/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Espermina/farmacología
5.
Biochim Biophys Acta ; 1850(2): 287-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25445711

RESUMEN

BACKGROUND: Accumulative evidences have indicated that oxidative-stress and over-activation of N-methyl-d-aspartate receptors (NMDARs) are important mechanisms of brain injury. This study investigated the neuroprotection of Kukoamine A (KuA) and its potential mechanisms. METHODS: Molecular docking was used to discover KuA that might have the ability of blocking NMDARs. Furthermore, the MTT assay, the measurement of LDH, SOD and MDA, the flow cytometry for ROS, MMP and Annexin V-PI double staining, the laser confocal microscopy for intracellular Ca2+ and western-blot analysis were employed to evaluate the neuroprotection of KuA. RESULTS: KuA attenuated H2O2-induced cell apoptosis, LDH release, ROS production, MDA level, MMP loss, and intracellular Ca2+ overload (both induced by H2O2 and NMDA), as well as increased the SOD activity. In addition, it could modulate the apoptosis-related proteins (Bax, Bcl-2, p53, procaspase-3 and procaspase-9), the SAPKs (ERK, p38), AKT, CREB, NR2A and NR2B expression. CONCLUSIONS: All the results indicated that KuA has the ability of anti-oxidative stress and this effect may partly via blocking NMDARs in SH-SY5Y cells. GENERAL SIGNIFICANCE: KuA might have the potential therapeutic interventions for brain injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Espermina/análogos & derivados , Proteínas Reguladoras de la Apoptosis/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Calcio/metabolismo , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/farmacología , L-Lactato Deshidrogenasa/metabolismo , Malondialdehído/metabolismo , Oxidantes/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Espermina/farmacología , Superóxido Dismutasa/metabolismo
6.
Recent Pat Anticancer Drug Discov ; 18(4): 506-516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36464873

RESUMEN

BACKGROUND: The occurrence and progression of cancer are the results of the dysregulation of genetics and epigenetics. Epigenetic regulation can reversibly affect gene transcription activity without changing DNA structure. Covalent modification of histones is crucial in the epigenetic regulation of gene expression. Furthermore, epidermal growth factor receptor (EGFR) significantly affects cell tumorigenesis, proliferation, antitumor drug resistance, etc. Overexpression of EGFR promotes cancer development. Therefore, EGFR-targeted drugs have become the focus of tumor therapy. With the advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), EGFR-TKIs resistance, which occurs about half a year to a year, has become an obstacle in cancer treatment. OBJECTIVE: The objective of this study is to discuss the ways to overcome EGFR-TKIs resistance in a variety of tumors. METHODS: The combination therapy of epigenetic drugs and other drugs is used. RESULTS: The combination of the two drugs can overcome the resistance of EGFR-TKIs and prolong the survival of patients. CONCLUSION: This article depicts the concepts of epigenetics and the mechanism of EGFR-TKIs resistance and then illustrates the relationship between epigenetic mechanisms and EGFR-TKIs resistance. Finally, it discusses the clinical research and the latest patents for using epigenetic drugs to reverse EGFR-TKIs resistance in human cancer. In the future, more novel targets may be discovered for overcoming resistance to EGFR-TKIs, not just on histone deacetylases (HDACs). The dosing course and mode of administration of the combination therapy containing epigenetic drugs need further study. This review provides new ideas for using epigenetic agents to overcome EGFR-TKIs resistance.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Epigénesis Genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Patentes como Asunto , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Mutación
7.
Neurotox Res ; 31(2): 259-268, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27815817

RESUMEN

Impaired hippocampal neurogenesis and neuroinflammation are involved in the pathogenesis of radiation-induced brain injury. Kukoamine A (KuA) was demonstrated to have neuroprotective effects through inhibiting oxidative stress and apoptosis after whole-brain irradiation (WBI) in rats. The aim of this study was to investigate whether administration of KuA would prevent radiation-induced neuroinflammation and the detrimental effect on hippocampal neurogenesis. For this study, male Wistar rats received either sham irradiation or WBI (30 Gy single dose of X-rays) followed by the immediate injection of either KuA or vehicle intravenously. The dose of KuA was 5, 10, and 20 mg/kg, respectively. The levels of pro-inflammatory cytokines were assayed by ELISA kits. The newborn neurons were detected by 5-bromo-2-deoxyuridine (BrdU)/neuronal nuclei (NeuN) double immunofluorescence. Microglial activation was measured by Iba-1 immunofluorescence. The expression of Cox-2 and the activation of nuclear factor κB (NF-κB), activating protein 1(AP-1), and PPARδ were evaluated by western blot. WBI led to a significant increase in the level of TNF-α, IL-1ß, and Cox-2, and it was alleviated by KuA administration. KuA attenuated microglial activation in rat hippocampus after WBI. Neurogenesis impairment induced by WBI was ameliorated by KuA. Additionally, KuA alleviated the increased translocation of NF-κB p65 subunit and phosphorylation of c-jun induced by WBI and elevated the expression of PPARδ. These data indicate that KuA could ameliorate the neuroinflammatory response and protect neurogenesis after WBI, partially through regulating the activation of NF-κB, AP-1, and PPARδ.


Asunto(s)
Hipocampo/efectos de la radiación , Inflamación/prevención & control , FN-kappa B/metabolismo , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Espermina/análogos & derivados , Factor de Transcripción AP-1/metabolismo , Animales , Encéfalo/efectos de la radiación , Ciclooxigenasa 2/biosíntesis , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Microglía/metabolismo , PPAR delta/biosíntesis , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo , Traumatismos Experimentales por Radiación/prevención & control , Ratas , Espermina/farmacología
8.
Neurol Res ; 38(12): 1079-1087, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27800716

RESUMEN

OBJECTIVES: Compound MQA (1,5-O-dicaffeoyl-3-O-[4-malic acid methyl ester]-quinic acid) is a natural caffeoylquinic acid derivative isolated from Arctium lappa L. roots. This study aims to explore the neuroprotective effects of MQA against hydrogen peroxide (H2O2)-induced oxidative stress in SH-SY5Y neuroblastoma cells. METHODS: The SH-SY5Y cells were divided into four groups, including control, 20 µM MQA, 200 µM H2O2, 200 µM H2O2 + 20 µM MQA groups. The effects of MQA on H2O2-induced cell death were measured by MTT and LDH assays. Hoechst 33342 and Annexin V-PI double staining were used to observed H2O2-induced apoptosis. Also, the effects of MQA on antioxidant system and mitochondrial pathway were explored. Further, steady-state phosphorylation levels of ERK1/2, Akt and GSK-3ß were examined by Western blot analysis. RESULTS: Pretreatment with MQA prevented cell death in SH-SY5Y cells exposed to 200 µM H2O2 for 3 h. Meanwhile, Hoechst 33342 and Annexin V-PI double staining showed that MQA attenuated H2O2-induced apoptosis. These changes are related to elevation in SOD activity, reduction in MDA production and ROS formation, and increases in mitochondrial membrane potential (MMP). In addition, the potential mechanisms of MQA against H2O2-induced apoptosis are associated with increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, caspase-3 and caspase-9 expressions, phosphorylation of ERK1/2, and dephosphorylation of AKT and GSK-3ß. CONCLUSION: These findings suggest that protective effects of MQA against H2O2-induced apoptosis might be associated with mitochondrial apoptosis, ERK1/2 and AKT/GSK-3ß pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Fármacos Neuroprotectores/farmacología , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Ácido Quínico/análogos & derivados , Anexina A5/metabolismo , Línea Celular Tumoral , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/farmacología , Ciclina D1/metabolismo , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , L-Lactato Deshidrogenasa/metabolismo , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuroblastoma/patología , Ácido Quínico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
9.
Environ Toxicol Pharmacol ; 40(1): 230-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26164594

RESUMEN

Oxidative stress mediates the cell damage in several neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease (AD) and Parkinson's disease (PD). This study aimed at investigating the protective effects of Kukoamine B (KuB) against hydrogen peroxide (H2O2) induced cell injury and potential mechanisms in SH-SY5Y cells. Our results revealed that treatment with KuB prior to H2O2 exposure effectively increased the cell viability, and restored the mitochondria membrane potential (MMP). Furthermore, KuB enhanced the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreased the malondialdehyde (MDA) content. Moreover, KuB minimized the ROS formation and inhibited mitochondria-apoptotic pathway, MAPKs (p-p38, p-JNK, p-ERK) pathways, but activated PI3K-AKT pathway. In conclusion, we believed that KuB may potentially serve as an agent for prevention of several human neurodegenerative and other disorders caused by oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Cafeicos/farmacología , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/farmacología , Espermina/análogos & derivados , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Catalasa/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Glutatión Peroxidasa/metabolismo , Humanos , Malondialdehído/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espermina/farmacología , Superóxido Dismutasa/metabolismo
10.
CNS Neurosci Ther ; 21(7): 575-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26096046

RESUMEN

AIMS: Compound MQA (1,5-O-dicaffeoyl-3-O-[4-malic acid methyl ester]-quinic acid) is a natural derivative of caffeoylquinic acid isolated from Arctium lappa L. roots. However, we know little about the effects of MQA on the central nervous system. This study aims to investigate the neuroprotective effects and underlying mechanisms of MQA against the neurotoxicity of N-methyl-d-aspartate (NMDA). METHODS AND RESULTS: Pretreatment with MQA attenuated the loss of cell viability after SH-SY5Y cells treated with 1 mM NMDA for 30 min by MTT assay. Hoechst 33342 and Annexin V-PI double staining showed that MQA inhibited NMDA-induced apoptosis. In addition to preventing Ca(2+) influx, the potential mechanisms are associated with increases in the Bcl-2/Bax ratio, attenuation of cytochrome c release, caspase-3, caspase-9 activities, and expressions. Also, MQA inhibited NMDA-induced phosphorylation of ERK1/2, p38, and JNK1/2. Furthermore, deactivation of CREB, AKT, and GSK-3ß, upregulation of GluN2B-containing NMDA receptors (NMDARs), and downregulation of GluN2A-containing NMDARs were significantly reversed by MQA treatment. Computational docking simulation indicates that MQA possesses a well affinity for NMDARs. CONCLUSION: The protective effects of MQA against NMDA-induced cell injury may be mediated by blocking NMDARs. The potential mechanisms are related with mitochondrial apoptosis, ERK-CREB, AKT/GSK-3ß, p38, and JNK1/2 pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Cafeicos/farmacología , Agonistas de Aminoácidos Excitadores/toxicidad , Malatos/farmacología , N-Metilaspartato/toxicidad , Fármacos Neuroprotectores/farmacología , Anexina A5/metabolismo , Calcio/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/farmacología , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , L-Lactato Deshidrogenasa/metabolismo , Neuroblastoma/patología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA