Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 235(5): 4361-4375, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637715

RESUMEN

Lung adenocarcinoma (LUAD) is one of the most malignant tumor types worldwide. Our objective was to identify a genetic signature that could predict the prognosis of patients with LUAD. We extracted gene data sets from The Cancer Genome Atlas and obtained differentially expressed genes that were highly expressed at every stage. These genes were analyzed using gene set enrichment analysis to obtain four biological processes associated with LUAD. Subsequently, Cox univariate and multivariate analyses were performed to generate four optimized models (G2M checkpoint, E2F targets, mitotic spindle, and glycolysis). We identified a mitotic spindle-related signature (KIF15, BUB1, CCNB2, CDK1, KIF4A, DLGAP5, ECT2, and ANLN), which could be an independent prognostic indicator, to predict the prognosis of patients with LUAD. This new discovery should offer opportunities to explore the pathogenesis of LUAD and prove clinically useful in predicting LUAD patient prognosis.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Pulmonares/metabolismo , Huso Acromático/metabolismo , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
2.
Cancer Cell Int ; 19: 360, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31892859

RESUMEN

BACKGROUND: Increasing studies have suggested that aberrant expression of microRNAs might play essential roles in the progression of cancers. In this study, we sought to construct a high-specific and superior microRNAs signature to improve the survival prediction of colon adenocarcinoma (COAD) patients. METHODS: The genome-wide miRNAs, mRNA and lncRNA expression profiles and corresponding clinical information of COAD were collected from the TCGA database. Differential expression analysis, Kaplan-Meier curve and time-dependent ROC curve were calculated and performed using R software and GraphPad Prism7. Univariate and multivariate Cox analysis was performed to evaluate the prognostic ability of signature. Functional enrichment analysis was analyzed using STRING database. RESULTS: We identified ten prognosis-related microRNAs, including seven risky factors (hsa-miR-197, hsa-miR-32, hsa-miR-887, hsa-miR-3199-2, hsa-miR-4999, hsa-miR-561, hsa-miR-210) and three protective factors (hsa-miR-3917, hsa-miR-3189, hsa-miR-6854). The Kaplan-Meier survival analysis showed that the patients with high risk score had shorter overall survival (OS) in test series. And the similar results were observed in both validation and entire series. The time-dependent ROC curve suggested this signature have high accuracy of OS for COAD. The Multivariate Cox regression analysis and stratification analysis suggested that the ten-microRNA signature was an independent factor after being adjusted with other clinical characteristics. In addition, we also found microRNA signature have higher AUC than other signature. Furthermore, we identified some miRNA-target genes that affect lymphatic metastasis and invasion of COAD patients. CONCLUSION: In this study, we established a ten-microRNA signature as a potentially reliable and independent biomarker for survival prediction of COAD patients.

4.
Front Cell Dev Biol ; 8: 583087, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224949

RESUMEN

Cancer stem cells (CSCs) are responsible for the migration and recurrence of cancer progression. Small nucleolar RNAs (snoRNAs) play important roles in tumor development. However, how snoRNAs contribute to the regulation of the stemness of ovarian CSCs (OCSCs) remains unclear. In the present study, we found that SNORA72 was significantly upregulated in OVCAR-3 spheroids (OS) and CAOV-3 spheroids (CS) with the OCSC characteristics attained by serum-free culture in a suspension of OVCAR-3 (OV) and CAOV-3 (CA) cells. The overexpression of SNORA72 increased self-renewal abilities and migration abilities in OV and CA cells and upregulated the expressions of the stemness markers Nanog, Oct4, and CD133. In addition, the ectopic expression of SNORA72 can elevate the messenger RNA (mRNA) and protein expression levels of Notch1 and c-Myc in parental cells. The opposite results were observed in SNORA72-silenced OCSCs. Moreover, we found that Notch1 knockdown inversed the migration abilities and self-renewal abilities raised by overexpressing SNORA72. In summary, stemness transformation of ovarian cancer cells can be activated by SNORA72 through the Notch1/c-Myc pathway. This study introduces a novel therapeutic strategy for improving the treatment efficiency of ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA