RESUMEN
So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.
Asunto(s)
Redes Reguladoras de Genes , Humanos , Lógica , Biología Sintética/métodos , Ingeniería Genética/métodos , Biología Computacional/métodos , AnimalesRESUMEN
Plant glycosyltransferases (UGTs) play a key role in plant growth and metabolism. Here, we examined the evolutionary landscape among UGTs in 28 fully sequenced species from early algae to angiosperms. Our findings revealed a distinctive expansion and contraction of UGTs in the G and H groups in tea (Camellia sinensis), respectively. Whole-genome duplication and tandem duplication events jointly drove the massive expansion of UGTs, and the interplay of natural and artificial selection has resulted in marked functional divergence within the G group of the sinensis-type tea population. In Cluster II of group G, differences in substrate selection (e.g., Abscisic Acid) of the enzymes encoded by UGT genes led to their functional diversification, and these genes influence tolerance to abiotic stresses such as low temperature and drought via different modes of positive and negative regulation, respectively. UGTs in Cluster III of the G group have diverse aroma substrate preferences, which contributes a diverse aroma spectrum of the sinensis-type tea population. All Cluster III genes respond to low-temperature stress, whereas UGTs within Cluster III-1, shaped by artificial selection, are unresponsive to drought. This suggests that artificial selection of tea plants focused on improving quality and cold tolerance as primary targets.
RESUMEN
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.
Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Interacciones Microbiota-Huesped , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Adenosina Trifosfatasas/metabolismo , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , COVID-19/virología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/deficiencia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Helicasas/metabolismo , Concentración 50 Inhibidora , ARN Helicasas/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Femenino , Animales , RatonesRESUMEN
Aptamers are ligand-binding RNA or DNA molecules and have been widely examined as biosensors, diagnostic tools, and therapeutic agents. The application of aptamers as biosensors commonly requires an expression platform to produce a signal to report the aptamer-ligand binding event. Traditionally, aptamer selection and expression platform integration are two independent steps and the aptamer selection requires the immobilization of either the aptamer or the ligand. These drawbacks can be easily overcome through the selection of allosteric DNAzymes (aptazymes). Herein, we used the technique of Expression-SELEX developed in our laboratory to select for aptazymes that can be specifically activated by low concentrations of l-phenylalanine. We chose a previous DNA-cleaving DNAzyme known as II-R1 as the expression platform for its low cleavage rate and used stringent selection conditions to drive the selection of high-performance aptazyme candidates. Three aptazymes were chosen for detailed characterization and these DNAzymes were found to exhibit a dissociation constant for l-phenylalanine as low as 4.8 µM, a catalytic rate constant improvement as high as 20 000-fold in the presence of l-phenylalanine, and the ability to discriminate against closely related l-phenylalanine analogs including d-phenylalanine. This work has established the Expression-SELEX as an effective SELEX method to enrich high-quality ligand-responsive aptazymes.
Asunto(s)
Aptámeros de Nucleótidos , ADN Catalítico , Fenilalanina , Aptámeros de Nucleótidos/química , ADN/química , ADN Catalítico/genética , ADN Catalítico/metabolismo , Ligandos , Fenilalanina/análisis , Técnica SELEX de Producción de Aptámeros/métodosRESUMEN
BACKGROUND: The C2H2 zinc finger protein family plays important roles in plants. However, precisely how C2H2s function in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear. RESULTS: In this study, a total of 69 OpC2H2 zinc finger protein genes were identified and clustered into five Groups. Seven tandem and ten fragment repeats were found in OpC2H2s, which underwent robust purifying selection. Of the identified motifs, motif 1 was present in all OpC2H2s and conserved at important binding sites. Most OpC2H2s possessed few introns and exons that could rapidly activate and react when faced with stress. The OpC2H2 promoter sequences mainly contained diverse regulatory elements, such as ARE, ABRE, and LTR. Under salt stress, two up-regulated OpC2H2s (OpC2H2-1 and OpC2H2-14) genes and one down-regulated OpC2H2 gene (OpC2H2-7) might serve as key transcription factors through the ABA and JA signaling pathways to regulate the growth and development of Opisthopappus species. CONCLUSION: The above results not only help to understand the function of C2H2 gene family but also drive progress in genetic improvement for the salt tolerance of Opisthopappus species.
Asunto(s)
Dedos de Zinc CYS2-HIS2 , Dedos de Zinc CYS2-HIS2/genética , Estrés Salino/genética , Genoma de Planta , Factores de Transcripción/metabolismo , Dedos de Zinc/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , FilogeniaRESUMEN
A low-calcium microenvironment is imperative for spermatozoa maturation within the epididymis. Our previous work has shown that γ-glutamyl carboxylase (GGCX), the carboxylation enzyme of the matrix Gla protein (MGP), plays an essential role in epididymal calcium homeostasis and sperm maturation in rats and that the GGCX SNP mutation rs699664 was associated with asthenozoospermia (AZS) in humans. Here, we investigated the expression patterns of GGCX and MGP in the mouse epididymis and generated GgcxK325Q knock-in (KI) mice. We also tested the effects of this mutation on epididymal calcium homeostasis, sperm function, and male fertility in GgcxK325Q-/- mice. The results showed that both GGCX and MGP were enriched in all regions of the mouse epididymis, especially in the initial segment of the epididymis. Double immunofluorescence staining revealed that GGCX colocalized with MGP in the epithelial cells of the initial segment and caput regions as well as in the lumen of the corpus and cauda regions of the mouse epididymis. However, the GgcxK325Q-/- mice were fertile with normal epididymal morphology, sperm functions, and epididymal calcium concentration. Overall, our findings revealed that the GgcxK325Q mutation does not exert any discernible effect on male fertility in mice.
RESUMEN
Since the large-scale outbreak of porcine epidemic diarrhoea (PED) in 2010, caused by the genotype 2 (G2) variant of the porcine epidemic diarrhoea virus (PEDV), pig farms in China, even those vaccinated with the G2b vaccine, have experienced infections from the G2a variant, leading to significant economic losses. This study successfully isolated the G2a strain DY2020 from positive small intestine contents (SICs) by blind passage on Vero cells for four generations. The SICs were taken from Daye, Hubei Province, China. The biological characteristics were identified by indirect immunofluorescence assay (IFA) and transmission electron microscopy (TEM). The growth kinetics of the strain on Vero cells were detected by TCID50, and the virus titre could reach 107.35 TCID50 ml-1 (SD: 5.07×106). The pathogenicity towards colostrum-deprived piglets was conducted by assessing faecal viral shedding, morphometric analysis of intestinal lesions, and immunohistochemical staining. The results showed that DY2020 was highly virulent to colostrum-deprived piglets, with severe watery diarrhoea and other clinical symptoms appeared at 6 h post-infection (h p.i.), and all died within 30 h. Pathological tissue examination results showed that the lesions mainly occurred in the intestines of piglets, causing pathological changes such as shortening of intestinal villi. In summary, the discovery of the G2a strain DY2020 in this study is of great significance for understanding Hubei PEDV and provides an important theoretical basis for the development of new efficient PEDV vaccines.
Asunto(s)
Virus de la Diarrea Epidémica Porcina , Chlorocebus aethiops , Animales , Porcinos , Virulencia , Células Vero , China , Diarrea/veterinariaRESUMEN
BACKGROUND: Plant height (PH) is an important agronomic trait influenced by a complex genetic network. However, the genetic basis for the variation in PH in Medicago sativa remains largely unknown. In this study, a comprehensive genome-wide association analysis was performed to identify genomic regions associated with PH using a diverse panel of 220 accessions of M. sativa worldwide. RESULTS: Our study identified eight novel single nucleotide polymorphisms (SNPs) significantly associated with PH evaluated in five environments, explaining 8.59-12.27% of the phenotypic variance. Among these SNPs, the favorable genotype of chr6__31716285 had a low frequency of 16.4%. Msa0882400, located proximal to this SNP, was annotated as phosphate transporter 3;1, and its role in regulating alfalfa PH was supported by transcriptome and candidate gene association analysis. In addition, 21 candidate genes were annotated within the associated regions that are involved in various biological processes related to plant growth and development. CONCLUSIONS: Our findings provide new molecular markers for marker-assisted selection in M. sativa breeding programs. Furthermore, this study enhances our understanding of the underlying genetic and molecular mechanisms governing PH variations in M. sativa.
Asunto(s)
Estudio de Asociación del Genoma Completo , Medicago sativa , Polimorfismo de Nucleótido Simple , Medicago sativa/genética , Fenotipo , Genes de Plantas , Sitios de Carácter Cuantitativo/genética , GenotipoRESUMEN
Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.
Asunto(s)
Camellia sinensis , Lepidópteros , Animales , Camellia sinensis/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Herbivoria , Larva , Té/metabolismo , Glucósidos/metabolismo , Proteínas de Plantas/metabolismoRESUMEN
A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to ß-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.
Asunto(s)
Antibacterianos , Genoma Bacteriano , Cabras , Pulmón , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S , Factores de Virulencia , Animales , Cabras/microbiología , ARN Ribosómico 16S/genética , Ratones , Antibacterianos/farmacología , Pulmón/microbiología , Pulmón/patología , Factores de Virulencia/genética , Enfermedades de las Cabras/microbiología , Secuenciación Completa del Genoma , Filogenia , Virulencia , Farmacorresistencia Bacteriana , ADN Bacteriano/genéticaRESUMEN
Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 gâL- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/ß-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.
Asunto(s)
Aureobasidium , Fermentación , Perfilación de la Expresión Génica , Glucanos , Mutagénesis , Glucanos/metabolismo , Aureobasidium/genética , Aureobasidium/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Mutación , Rizosfera , Microbiología del Suelo , Transcriptoma , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMEN
BACKGROUND: The underlying functional alterations of brain structural changes among patients with empathy impairment following stroke remain unclear. We sought to investigate functional connectivity changes informed by brain structural abnormalities in multimodal magnetic resonance imaging (MRI) among patients with empathy impairment following stroke. METHODS: We enrolled people who had experienced their first ischemic stroke, along with healthy controls. We assessed empathy 3 months after stroke using the Chinese version of the Empathy Quotient (EQ). During the acute phase, all patients underwent basic magnetic resonance imaging (MRI), followed by multimodal MRI during follow-up. Our MRI analyses encompassed acute infarction segmentation, volumetric brain measurements, regional quantification of diffusion parameters, and both region-of-interest-based and seed-based functional connectivity assessments. We grouped patients based on the severity of their empathy impairment for comparative analysis. RESULTS: We included 84 patients who had stroke and 22 healthy controls. Patients had lower EQ scores than controls. Patients with low empathy had larger left cortical infarcts (odds ratio [OR] 4.082, 95% confidence interval [CI] 1.183-14.088), more pronounced atrophy in the right cingulate cortex (OR 1.248, 95% CI 1.038-1.502), and lower scores on the Montreal Cognitive Assessment (OR 0.873, 95% CI 0.74-0.947). In addition, the cingulate cortex served as the seed in the seed-based analysis, which showed heightened functional connectivity between the anterior cingulate gyrus and the right superior parietal lobule, specifically in the low-empathy group. LIMITATIONS: We did not evaluate the relationship between specific network involvement and empathy impairment among patients following stroke. CONCLUSION: Among patients with subacute ischemic stroke, reduced empathy was strongly associated with a more severe cognitive profile and atrophy of the right cingulate cortex. Our subsequent structural-informed functional MRI analysis suggests that the enhanced connectivity between the anterior cingulate gyrus and the superior parietal lobule may function as a compensatory mechanism for this atrophy.
Asunto(s)
Empatía , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Empatía/fisiología , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/patología , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Giro del Cíngulo/patología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/psicologíaRESUMEN
It is well established that the synthesis of extracellular matrix (ECM) in mesangial cells is a major determinant of diabetic kidney disease (DKD). Elucidating the major players in ECM synthesis may be helpful to provide promising candidates for protecting against DKD progression. tRF3-IleAAT is a tRNA-derived fragment (tRF) produced by nucleases at tRNA-specific sites, which is differentially expressed in the sera of patients with diabetes mellitus and DKD. In this study we investigated the potential roles of tRFs in DKD. Db/db mice at 12 weeks were adapted as a DKD model. The mice displayed marked renal dysfunction accompanied by significantly reduced expression of tRF3-IleAAT and increased ferroptosis and ECM synthesis in the kidney tissues. The reduced expression of tRF3-IleAAT was also observed in high glucose-treated mouse glomerular mesangial cells. We administered ferrostatin-1 (1 mg/kg, once every two days, i.p.) to the mice from the age of 12 weeks for 8 weeks, and found that inhibition of the onset of ferroptosis significantly improved renal function, attenuated renal fibrosis and reduced collagen deposition. Overexpression of tRF3-IleAAT by a single injection of AAV carrying tRF3-IleAAT via caudal vein significantly inhibited ferroptosis and ECM synthesis in DKD model mice. Furthermore, we found that the expression of zinc finger protein 281 (ZNF281), a downstream target gene of tRF3-IleAAT, was significantly elevated in DKD models but negatively regulated by tRF3-IleAAT. In high glucose-treated mesangial cells, knockdown of ZNF281 exerted an inhibitory effect on ferroptosis and ECM synthesis. We demonstrated the targeted binding of tRF3-IleAAT to the 3'UTR of ZNF281. In conclusion, tRF3-IleAAT inhibits ferroptosis by targeting ZNF281, resulting in the mitigation of ECM synthesis in DKD models, suggesting that tRF3-IleAAT may be an attractive therapeutic target for DKD.
Asunto(s)
Nefropatías Diabéticas , Matriz Extracelular , Ferroptosis , Animales , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Nefropatías Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Humanos , Células Mesangiales/metabolismoRESUMEN
The proliferation of nitrile mixtures has significantly exacerbated environmental pollution. This study employed metagenomic analysis to investigate the short-term effects of nitrile mixtures on soil microbial communities and their metabolic functions. It also examined the responses of indigenous microorganisms and their functional metabolic genes across various land use types to different nitrile stressors. The nitrile compound treatments in this study resulted in an increase in the abundance of Proteobacteria, Actinobacteria, and Firmicutes, while simultaneously reducing overall microbial diversity. The key genes involved in the denitrification process, namely, nirK, nosZ, and hao, were down-regulated, and NO3--N, NO2--N, and NH4+-N concentrations decreased by 7.7%-12.3%, 11.1%-21.3%, and 11.3%-30.9%, respectively. Notably, pond sludge samples exhibited a significant increase in the abundance of nitrogen fixation-related genes nifH, vnfK, vnfH, and vnfG following exposure to nitrile compounds. Furthermore, the fumarase gene fumD, which is responsible for catalyzing fumaric acid into malic acid in the tricarboxylic acid cycle, showed a substantial increase of 7.2-10.6-fold upon nitrile addition. Enzyme genes associated with the catechol pathway, including benB-xylY, dmpB, dmpC, dmpH, and mhpD, displayed increased abundance, whereas genes related to the benzoyl-coenzyme A pathway, such as bcrA, dch, had, oah, and gcdA, were notably reduced. In summary, complex nitrile compounds were found to significantly reduce the species diversity of soil microorganisms. Nitrile-tolerant microorganisms demonstrated the ability to degrade and adapt to nitrile pollutants by enhancing functional enzymes involved in the catechol pathway and fenugreek conversion pathway. This study offers insights into the specific responses of microorganisms to compound nitrile contamination, as well as valuable information for screening nitrile-degrading microorganisms and identifying nitrile metabolic enzymes.
Asunto(s)
Metagenoma , Nitrilos , Microbiología del Suelo , Contaminantes del Suelo , Nitrilos/toxicidad , Contaminantes del Suelo/toxicidad , Metagenoma/efectos de los fármacos , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genéticaRESUMEN
2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.
Asunto(s)
Enterobacter aerogenes , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Ingeniería Metabólica/métodos , Butileno Glicoles/metabolismo , Reactores Biológicos , FermentaciónRESUMEN
BACKGROUND: Cervical spondylotic myelopathy (CSM) is the most common chronic spinal cord injury with poor surgical and neurologic recovery in the advanced stages of the disease. DTI parameters can serve as important biomarkers for CSM prognosis. The study aimed to investigate the predictive value of dynamic diffusion tensor imaging (DTI) for the postoperative outcomes of CSM. METHODS: One hundred and five patients with CSM who underwent surgery were included in this study. Patients were assessed using the Modified Japanese Orthopedic Association Score (mJOA) before and one year after surgery and then divided into groups with good (≥ 50%) and poor (< 50%) prognoses according to the rate of recovery. All patients underwent preoperative dynamic magnetic resonance imaging of the cervical spine, including T2WI and DTI in natural(N), extension (E), and flexion (F) positions. ROM, Cross-sectional area, fractional anisotropy (FA), and apparent diffusion coefficient (ADC) were measured at the narrowest level in three neck positions. Univariate and multivariate logistic regression were used to identify risk factors for poor postoperative recovery based on clinical characteristics, dynamic T2WI, and DTI parameters. Predictive models were developed for three different neck positions. RESULTS: Forty-four (41.9%) patients had a good postoperative prognosis, and 61 (58.1%) had a poor prognosis. Univariate analysis showed statistically significant differences in diabetes, number of compression segments, preoperative mJOA score, cross-sectional area ((Area-N), (Area-E), (Area-F)), ADC((ADC-N), (ADC-E), (ADC-F)) and FA (((FA-N), (FA-E), (FA-F)) (p < 0.05). Multivariable logistic regression showed that natural neck position: Area-N ([OR] 0.226; [CI] 0.069-0.732, p = 0.013),FA-N([OR]3.028;[CI]1.12-8.19,p = 0.029); extension ne-ck position: Area-E([OR]0.248;[CI]0.076-0.814,p = 0.021), FA-E([OR]4.793;[CI]1.737-13.228,p = 0.002);And flextion neck postion: Area-F([OR] 0.288; [CI] 0.095-0.87, p = 0.027),FA-F ([OR] 2.964; [CI] 1.126-7.801, p = 0.028) were independent risk factors for poor prognosis.The area under the curve (AUC) of the prediction models in the natural neck position, extension neck position, and flexion neck positions models were 0.708[(95% CI:0.608â¼0.808), P < 0.001]; 0.738 [(95% CI:0.641â¼0.835), P < 0.001]; 0.703 [(95% CI:0.602â¼0.803), P < 0.001], respectively. CONCLUSION: Dynamic DTI can predict postoperative outcomes in CSM. Reduced FA in the extension position is a valid predictor of poor postoperative neurological recovery in patients with CSM.
Asunto(s)
Vértebras Cervicales , Imagen de Difusión Tensora , Espondilosis , Humanos , Imagen de Difusión Tensora/métodos , Femenino , Masculino , Persona de Mediana Edad , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Anciano , Pronóstico , Valor Predictivo de las Pruebas , Resultado del Tratamiento , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , AdultoRESUMEN
PURPOSE: To investigate the clinical application of zonally magnified oblique multislice (ZOOM) imaging technology in patients with degenerative cervical myelopathy (DCM) and compare it with T2WI imaging. METHODS: A total of 111 patients diagnosed with DCM were recruited. According to mJOA, patients with DCM were divided into ND + group with neurological dysfunction and ND- group without neurological dysfunction. Routine MRI and ZOOM-DWI were performed on 3.0 T MRI to obtain sagittal T2WI and apparent diffusion coefficient (ADC) diagram. ADC values of the narrow segment and its adjacent upper and lower segments were measured, and compared between the ND + and ND- groups. The correlation between ADC value of cervical spinal cord and mJOA score was analyzed. Additionally, ROC curves were plotted to calculate the AUC values. RESULTS: The comparison between ND + and ND- groups shows that there are significant differences in mJOA score, T2WI, anteroposterior diameter of spinal canal, ADC values of narrow, upper and lower segment (P < 0.05). In ND + group, there is a significant difference between ADC values of the narrow and its upper and lower segments (P < 0.001), while with no significant difference in ADC values of the upper and lower segments (P > 0.05). Results of correlation analysis indicate that in the ND + group, neurological dysfunction evaluated by mJOA scores is correlated with increased ADC values of the narrow segment (r = -0.52, P < 0.001), but not significantly correlated with ADC values of the upper and lower segments. Furthermore, T2WI, anteroposterior diameter of the spinal canal, and cervical cord ADC values all has diagnostic efficacy in evaluating neurological dysfunction in DCM (AUC > 0.5, P < 0.05), with the ADC value of the narrow segment being optimal. CONCLUSION: The ADC value of spinal cord obtained by small-field ZOOM-DWI can be used to evaluate neurological dysfunction in DCM, and is superior to traditional T2WI.
Asunto(s)
Vértebras Cervicales , Imagen de Difusión por Resonancia Magnética , Enfermedades de la Médula Espinal , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Vértebras Cervicales/diagnóstico por imagen , Enfermedades de la Médula Espinal/diagnóstico por imagen , Adulto , Imagen por Resonancia Magnética/métodosRESUMEN
Microplastics (MPs), emerging as significant pollutants, have been consistently detected in aquatic environments, with the Yangtze River experiencing a particularly severe level of microplastic pollution, exceeding all other watersheds in China. Polypropylene (PP), the plastic most abundantly found in the middle and lower reaches of the Yangtze River Basin, has less comprehensive research results into its toxic effects. Consequently, the present investigation employed zebrafish as a model organism to delve into the toxicological impacts of polypropylene microplastics (PP-MPs) with a diameter of 5 µm across varying concentrations (300â¯mg/L and 600â¯mg/L). Using histopathological, microbiota profiling, and transcriptomic approaches, we systematically evaluated the impact of PP-MPs exposure on the intestine and liver of zebrafish. Histopathological analysis revealed that exposure to PP-MPs resulted in thinner intestinal walls, damaged intestinal mucosa, and hepatic cellular damage. Intestinal microbiota profiling demonstrated that, the richness, uniformity, diversity, and homogeneity of gut microbes significantly increased after the PP-MPs exposure at high concentration. These alterations were accompanied by shifts in the relative abundance of microbiota associated with intestinal pathologies, suggesting a profound impact on the intestinal microbial community structure. Concurrently, hepatic transcriptome analysis and RT-qPCR indicated that the downregulation of pathways and genes associated with cell proliferation regulation and DNA damage repair mechanisms contributed to hepatic cellular damage, ultimately exerting adverse effects on the liver. Correlation analysis between the intestinal microbiota and liver transcriptome profiles further highlighted significant associations between intestinal microbiota and the downregulated hepatic pathways. Collectively, these results provide novel insights into the subacute toxicological mechanisms of PP-MPs in aquatic organisms and highlight the need for further research on the ecological and health risks associated with PP-MPs pollution.
Asunto(s)
Microbioma Gastrointestinal , Hígado , Microplásticos , Polipropilenos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Microplásticos/toxicidad , Polipropilenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Microbioma Gastrointestinal/efectos de los fármacos , China , Intestinos/efectos de los fármacos , Intestinos/patología , Transcriptoma/efectos de los fármacos , Ríos/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patologíaRESUMEN
Detecting early warning indicators for abrupt dynamical transitions in complex systems or high-dimensional observation data are essential in many real-world applications, such as brain diseases, natural disasters, and engineering reliability. To this end, we develop a novel approach: the directed anisotropic diffusion map that captures the latent evolutionary dynamics in the low-dimensional manifold. Then three effective warning signals (Onsager-Machlup indicator, sample entropy indicator, and transition probability indicator) are derived through the latent coordinates and the latent stochastic dynamical systems. To validate our framework, we apply this methodology to authentic electroencephalogram data. We find that our early warning indicators are capable of detecting the tipping point during state transition. This framework not only bridges the latent dynamics with real-world data but also shows the potential ability for automatic labeling on complex high-dimensional time series.
RESUMEN
OBJECTIVE: As important functional cells in the ovary, ovarian granulosa cells are involved in the regulation of oocyte growth and development and play an important role in the study of female fertility preservation. Based on the importance of granulosa cell functionalism, in this study, we analyzed the exosome secretion capacity of human ovarian granulosa cells (SVOG/KGN-cell line, PGC-primary cells) and the differences in their miRNA expression. METHODS: Cells were identified by hematoxylin-eosin staining (HE) and FSHR immunofluorescence staining; CCK8 and colony-forming assay were performed to compare cell proliferation capacity; exosomes were extracted and identified by ultra-high speed centrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot analysis (WB), and the expression profile of each cellular exosomal miRNA was analyzed by miRNA high-throughput sequencing. RESULTS: The proliferative abilities of the three granulosa cells differed, but all had the ability to secrete exosomes. In the exosomes of SVOG, KGN, and PGC cells, 218, 327, and 471 miRNAs were detected, respectively. When compared to the exosomal miRNAs of PGC cells, 111 miRNAs were significantly different in SVOG, and 70 miRNAs were washed two significantly different in KGN cells. These differential miRNA functions were mainly enriched in the cell cycle, cell division/differentiation, multicellular biogenesis, and protein binding. CONCLUSION: Human ovarian granulosa cells of different origins are capable of secreting exosomes, but there are still some differences in their exosomes and exosomal miRNAs, and experimental subjects should be selected rationally according to the actual situation.