Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(10): 4322-4333, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38733561

RESUMEN

Revealing the mechanisms that influence transcription factor binding specificity is the key to understanding gene regulation. In previous studies, DNA double helix structure and one-hot embedding have been used successfully to design computational methods for predicting transcription factor binding sites (TFBSs). However, DNA sequence as a kind of biological language, the method of word embedding representation in natural language processing, has not been considered properly in TFBS prediction models. In our work, we integrate different types of features of DNA sequence to design a multichanneled deep learning framework, namely MulTFBS, in which independent one-hot encoding, word embedding encoding, which can incorporate contextual information and extract the global features of the sequences, and double helix three-dimensional structural features have been trained in different channels. To extract sequence high-level information effectively, in our deep learning framework, we select the spatial-temporal network by combining convolutional neural networks and bidirectional long short-term memory networks with attention mechanism. Compared with six state-of-the-art methods on 66 universal protein-binding microarray data sets of different transcription factors, MulTFBS performs best on all data sets in the regression tasks, with the average R2 of 0.698 and the average PCC of 0.833, which are 5.4% and 3.2% higher, respectively, than the suboptimal method CRPTS. In addition, we evaluate the classification performance of MulTFBS for distinguishing bound or unbound regions on TF ChIP-seq data. The results show that our framework also performs well in the TFBS classification tasks.


Asunto(s)
Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Sitios de Unión , Aprendizaje Profundo , ADN/química , ADN/metabolismo , Biología Computacional/métodos , Redes Neurales de la Computación
2.
J Bioinform Comput Biol ; 22(1): 2450001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38406833

RESUMEN

Antimicrobial peptides (AMPs), as the preferred alternatives to antibiotics, have wide application with good prospects. Identifying AMPs through wet lab experiments remains expensive, time-consuming and challenging. Many machine learning methods have been proposed to predict AMPs and achieved good results. In this work, we combine two kinds of word embedding features with the statistical features of peptide sequences to develop an ensemble classifier, named EnAMP, in which, two deep neural networks are trained based on Word2vec and Glove word embedding features of peptide sequences, respectively, meanwhile, we utilize statistical features of peptide sequences to train random forest and support vector machine classifiers. The average of four classifiers is the final prediction result. Compared with other state-of-the-art algorithms on six datasets, EnAMP outperforms most existing models with similar computational costs, even when compared with high computational cost algorithms based on Bidirectional Encoder Representation from Transformers (BERT), the performance of our model is comparable. EnAMP source code and the data are available at https://github.com/ruisue/EnAMP.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Redes Neurales de la Computación , Antibacterianos/farmacología , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA