Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 624(7992): 557-563, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913815

RESUMEN

Perovskite solar cells with the formula FA1-xCsxPbI3, where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice1,2, the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells3,4. Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p-i-n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability.

2.
Nature ; 589(7842): 396-401, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473229

RESUMEN

The water-gas shift (WGS) reaction is an industrially important source of pure hydrogen (H2) at the expense of carbon monoxide and water1,2. This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures3. Here we demonstrate that the structure (Pt1-Ptn)/α-MoC, where isolated platinum atoms (Pt1) and subnanometre platinum clusters (Ptn) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt1 and Ptn species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production.

3.
Nano Lett ; 24(17): 5284-5291, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626333

RESUMEN

The performance of blue quantum dot light-emitting diodes (QLEDs) is limited by unbalanced charge injection, resulting from insufficient holes caused by low mobility or significant energy barriers. Here, we introduce an angular-shaped heteroarene based on cyclopentane[b]thiopyran (C8-SS) to modify the hole transport layer poly-N-vinylcarbazole (PVK), in blue QLEDs. C8-SS exhibits high hole mobility and conductivity due to the π···π and S···π interactions. Introducing C8-SS to PVK significantly enhanced hole mobility, increasing it by 2 orders of magnitude from 2.44 × 10-6 to 1.73 × 10-4 cm2 V-1 s-1. Benefiting from high mobility and conductivity, PVK:C8-SS-based QLEDs exhibit a low turn-on voltage (Von) of 3.2 V. More importantly, the optimized QLEDs achieve a high peak power efficiency (PE) of 7.13 lm/W, which is 2.65 times that of the control QLEDs. The as-proposed interface engineering provides a novel and effective strategy for achieving high-performance blue QLEDs in low-energy consumption lighting applications.

4.
J Am Chem Soc ; 146(28): 19108-19117, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38847788

RESUMEN

Previous findings have suggested a close association between oxygen vacancies in SnO2 and charge carrier recombination as well as perovskite decomposition at the perovskite/SnO2 interface. Underlying the fundamental mechanism holds great significance in achieving a more favorable balance between the efficiency and stability. In this study, we prepared three SnO2 samples with different oxygen vacancy concentrations and observed that a low oxygen vacancy concentration is conducive to long-term device stability. Iodide ions were observed to easily diffuse into regions with high oxygen vacancies, thereby speeding up the deprotonation of FAI, as made evident by the detection of the decomposition product formamide. In contrast, a high oxygen vacancy concentration in SnO2 could prevent hole injection, leading to a decrease in interfacial recombination losses. To suppress this decomposition reaction and address the trade-off, we designed a bilayer SnO2 structure to ensure highly efficient carrier transport still while maintaining a chemically inert surface. As a result, an enhanced efficiency of 25.06% (certified at 24.55% with an active area of 0.09 cm2 under fast scan) was achieved, and the extended operational stability maintained 90% of their original efficiency (24.52%) after continuous operation for nearly 2000 h. Additionally, perovskite submodules with an active area of 14 cm2 were successfully assembled with a PCE of up to 22.96% (20.09% with an aperture area).

5.
Small ; : e2310455, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682596

RESUMEN

Organometal halide perovskite solar cells (PSCs) have received great attention owing to a rapid increase in power conversion efficiency (PCE) over the last decade. However, the deficit of long-term stability is a major obstacle to the implementation of PSCs in commercialization. The defects in perovskite films are considered as one of the primary causes. To address this issue, isocyanic acid (HNCO) is introduced as an additive into the perovskite film, in which the added molecules form covalent bonds with FA cations via a chemical reaction. This chemical reaction gives rise to an efficient passivation on the perovskite film, resulting in an improved film quality, a suppressed non-radiation recombination, a facilitated carrier transport, and optimization of energy band levels. As a result, the HNCO-based PSCs achieve a high PCE of 24.41% with excellent storage stability both in an inert atmosphere and in air. Different from conventional passivation methods based on coordination effects, this work presents an alternative chemical reaction for defect passivation, which opens an avenue toward defect-mitigated PSCs showing enhanced performance and stability.

6.
Bull Math Biol ; 86(6): 71, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719993

RESUMEN

Due to the complex interactions between multiple infectious diseases, the spreading of diseases in human bodies can vary when people are exposed to multiple sources of infection at the same time. Typically, there is heterogeneity in individuals' responses to diseases, and the transmission routes of different diseases also vary. Therefore, this paper proposes an SIS disease spreading model with individual heterogeneity and transmission route heterogeneity under the simultaneous action of two competitive infectious diseases. We derive the theoretical epidemic spreading threshold using quenched mean-field theory and perform numerical analysis under the Markovian method. Numerical results confirm the reliability of the theoretical threshold and show the inhibitory effect of the proportion of fully competitive individuals on epidemic spreading. The results also show that the diversity of disease transmission routes promotes disease spreading, and this effect gradually weakens when the epidemic spreading rate is high enough. Finally, we find a negative correlation between the theoretical spreading threshold and the average degree of the network. We demonstrate the practical application of the model by comparing simulation outputs to temporal trends of two competitive infectious diseases, COVID-19 and seasonal influenza in China.


Asunto(s)
COVID-19 , Simulación por Computador , Gripe Humana , Cadenas de Markov , Conceptos Matemáticos , Modelos Biológicos , SARS-CoV-2 , Humanos , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/prevención & control , Gripe Humana/epidemiología , Gripe Humana/transmisión , China/epidemiología , Número Básico de Reproducción/estadística & datos numéricos , Modelos Epidemiológicos , Pandemias/estadística & datos numéricos , Pandemias/prevención & control , Epidemias/estadística & datos numéricos
7.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732812

RESUMEN

The treadmill exercise test (TET) serves as a non-invasive method for the diagnosis of coronary artery disease (CAD). Despite its widespread use, TET reports are susceptible to external influences, heightening the risk of misdiagnosis and underdiagnosis. In this paper, we propose a novel automatic CAD diagnosis approach. The proposed approach introduces a customized preprocessing method to obtain clear electrocardiograms (ECGs) from individual TET reports. Additionally, it presents TETDiaNet, a novel neural network designed to explore the temporal relationships within TET ECGs. Central to TETDiaNet is the TETDia block, which mimics clinicians' diagnostic processes to extract essential diagnostic information. This block encompasses an intra-state contextual learning module and an inter-state contextual learning module, modeling the temporal relationships within a single state and between states, respectively. These two modules help the TETDia block to capture effective diagnosis information by exploring the temporal relationships within TET ECGs. Furthermore, we establish a new TET dataset named TET4CAD for CAD diagnosis. It contains simplified TET reports for 192 CAD patients and 224 non-CAD patients, and each patient undergoes coronary angiography for labeling. Experimental results on TET4CAD underscore the superior performance of the proposed approach, highlighting the discriminative value of the temporal relationships within TET ECGs for CAD diagnosis.


Asunto(s)
Enfermedad de la Arteria Coronaria , Electrocardiografía , Prueba de Esfuerzo , Redes Neurales de la Computación , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Prueba de Esfuerzo/métodos , Electrocardiografía/métodos , Masculino , Algoritmos , Femenino
8.
Nano Lett ; 23(22): 10157-10163, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37909774

RESUMEN

A levitated nonspherical nanoparticle in a vacuum is ideal for studying quantum rotations and is an ultrasensitive torque detector for probing fundamental particle-surface interactions. Here, we optically levitate a silica nanodumbbell in a vacuum at 430 nm away from a sapphire surface and drive it to rotate at GHz frequencies. The relative linear speed between the tip of the nanodumbbell and the surface reaches 1.4 km s-1 at a submicrometer separation. The rotating nanodumbbell near the surface demonstrates a torque sensitivity of (5.0 ± 1.1) × 10-26 N m Hz-1/2 at room temperature. Moreover, we probed the near-field laser intensity distribution beyond the optical diffraction limit with a nanodumbbell levitated near a nanograting. Our numerical simulations show that the system can measure the Casimir torque and will improve the detection limit of non-Newtonian gravity by several orders of magnitude.

9.
Nano Lett ; 23(6): 2195-2202, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913436

RESUMEN

Due to their low cost and simplified production process, electron-transport-layer-free (ETL-free) perovskite solar cells (PSCs) have attracted great attention recently. However, the performance of ETL-free PSCs is still at a disadvantage compared to cells with a conventional n-i-p structure due to the severe recombination of charge carriers at the perovskite/anode interface. Here, we report a strategy to fabricate stable ETL-free FAPbI3 PSCs by in situ formation of a low dimensional perovskite layer between the FTO and the perovskite. This interlayer gives rise to the energy band bending and reduced defect density in the perovskite film and indirect contact and improved energy level alignment between the anode and perovskite, which facilitates charge carrier transport and collection and suppresses charge carrier recombination. As a result, ETL-free PSCs with a power conversion efficiency (PCE) exceeding 22% are achieved under ambient conditions.

10.
Nano Lett ; 23(1): 25-33, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36383034

RESUMEN

The negatively charged boron vacancy (VB-) defect in hexagonal boron nitride (hBN) with optically addressable spin states has emerged due to its potential use in quantum sensing. Remarkably, VB- preserves its spin coherence when it is implanted at nanometer-scale distances from the hBN surface, potentially enabling ultrathin quantum sensors. However, its low quantum efficiency hinders its practical applications. Studies have reported improving the overall quantum efficiency of VB- defects with plasmonics; however, the overall enhancements of up to 17 times reported to date are relatively modest. Here, we demonstrate much higher emission enhancements of VB- with low-loss nanopatch antennas (NPAs). An overall intensity enhancement of up to 250 times is observed, corresponding to an actual emission enhancement of ∼1685 times by the NPA, along with preserved optically detected magnetic resonance contrast. Our results establish NPA-coupled VB- defects as high-resolution magnetic field sensors and provide a promising approach to obtaining single VB- defects.

11.
Angew Chem Int Ed Engl ; 63(7): e202318133, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168100

RESUMEN

Buried interface modification can effectively improve the compatibility between interfaces. Given the distinct interface selections in perovskite solar cells (PSCs), the applicability of a singular modification material remains limited. Consequently, in response to this challenge, we devised a tailored molecular strategy based on the electronic effects of specific functional groups. Therefore, we prepared three distinct silane coupling agents, and due to the varying inductive effects of these functional groups, the electronic distribution and molecular dipole moments of the coupling agents are correspondingly altered. Among them, trimethoxy (3,3,3-trifluoropropyl)-silane (F3 -TMOS), which possesses electron-withdrawing groups, generates a molecular dipole moment directed toward the hole transport layer (HTL). This approach changes the work function of the HTL, optimizes the energy level alignment, reduces the open-circuit voltage loss, and facilitates carrier transport. Furthermore, through the buffering effect of the coupling agent, the interface strain and lattice distortion caused by annealing the perovskite are reduced, enhancing the stability of the tin-based perovskite. Encouragingly, tin PSCs treated with F3 -TMOS achieved a champion efficiency of 14.67 %. This strategy provides an expedient avenue for the design of buried interface modification materials, enabling precise molecular adjustments in accordance with distinct interfacial contexts to ameliorate mismatched energetics and enhance carrier dynamics.

12.
Angew Chem Int Ed Engl ; 63(7): e202319730, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168882

RESUMEN

Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced crystallization of the halide-mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non-radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low-dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+ ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+ -guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi-2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure-blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide-mixed blue perovskite crystallization by manipulating the characteristics of grain-growth substrate.

13.
Angew Chem Int Ed Engl ; : e202406140, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981859

RESUMEN

Blue perovskite light-emitting diodes (PeLEDs) are crucial avenues for achieving full-color displays and lighting based on perovskite materials. However, the relatively low external quantum efficiency (EQE) has hindered their progression towards commercial applications. Quasi-two-dimensional (quasi-2D) perovskites stand out as promising candidates for blue PeLEDs, with optimized control over low-dimensional phases contributing to enhanced radiative properties of excitons. Herein, the impact of organic molecular dopants on the crystallization of various n-phase structures in quasi-2D perovskite films. The results reveal that the highly reactive bis(4-(trifluoromethyl)phenyl)phosphine oxide (BTF-PPO) molecule could effectively restrain the formation of organic spacer cation-ordered layered perovskite phases through chemical reactions, simultaneously passivate those uncoordinated Pb2+ defects. Consequently, the prepared PeLEDs exhibited a maximum EQE of 16.6% (@ 490 nm). The finding provides a new route to design dopant molecules for phase modulation in quasi-2D PeLEDs.

14.
Small ; 19(49): e2303255, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606884

RESUMEN

Fluoro-substituted aromatic alkylammonium spacer cations are found effective to improve the performance of quasi-2D perovskite light-emitting diodes (PeLEDs). The fluorine substitution is generally attributed to the defect passivation, quantum well width control, and energy level adjustments. However, the substituted cations can also affect the crystallization process but is not thoroughly studied. Herein, a comparison study is carried out using bare PEA cation and three different fluoro-substituted PEA (x-F-PEA, x = o, ortho; m, meta; p, para) cations to investigate the impacts of different substitution sites on the perovskite crystallization and orientations. By using GIWAXS, p-F-PEA cation is found to induce the strongest preferential out-of-plane orientations with the best crystallinity in quasi-2D perovskite. Using dynamic light scattering (DLS) methods, larger colloidal particles (630 nm) are revealed in p-F-PEA precursor solutions than the PEA cations (350 nm). The larger particles can accelerate the crystallization process and induce out-of-plane orientation from increased dipole-dipole interaction. The transient absorption measurement confirms longer radiative recombination lifetime, proving beneficial effect of p-F-PEA cation. As a result, the fabricated p-F-PEA-based PeLEDs achieved the highest EQE of 15.2%, which is higher than those of PEA- (8.8%), o-F-PEA- (4.3%), and m-F-PEA-based (10.3%) PeLEDs.

15.
Small ; 19(24): e2207817, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919945

RESUMEN

Both the uncoordinated Pb2+ and excess PbI2 in perovskite film will create defects and perturb carrier collection, thus leading to the open-circuit voltage (VOC ) loss and inducing rapid performance degradation of perovskite solar cells (PSCs). Herein, an additive of 3-aminothiophene-2-carboxamide (3-AzTca) that contains amide and amino and features a large molecular size is introduced to improve the quality of perovskite film. The interplay of size effect and adequate bonding strength between 3-AzTca and uncoordinated Pb2+ regulates the mineralization of PbI2 and generates low-dimensional PbI2 phase, thereby boosting the crystallization of perovskite. The decreased defect states result in suppressed nonradiative recombination and reduced VOC loss. The power conversion efficiency (PCE) of modified PSC is improved to 22.79% with a high VOC of 1.22 V. Moreover, the decomposition of PbI2 and perovskite films is also retarded, yielding enhanced device stability. This study provides an effective method to minimize the concentration of uncoordinated Pb2+ and improve the PCE and stability of PSCs.

16.
Nat Mater ; 21(9): 1024-1028, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35970964

RESUMEN

Electron spins in van der Waals materials are playing a crucial role in recent advances in condensed-matter physics and spintronics. However, nuclear spins in van der Waals materials remain an unexplored quantum resource. Here we report optical polarization and coherent control of nuclear spins in a van der Waals material at room temperature. We use negatively charged boron vacancy ([Formula: see text]) spin defects in hexagonal boron nitride to polarize nearby nitrogen nuclear spins. We observe the Rabi frequency of nuclear spins at the excited-state level anti-crossing of [Formula: see text] defects to be 350 times larger than that of an isolated nucleus, and demonstrate fast coherent control of nuclear spins. Further, we detect strong electron-mediated nuclear-nuclear spin coupling that is five orders of magnitude larger than the direct nuclear-spin dipolar coupling, enabling multi-qubit operations. Our work opens new avenues for the manipulation of nuclear spins in van der Waals materials for quantum information science and technology.

17.
Phys Chem Chem Phys ; 25(17): 12515-12521, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37097757

RESUMEN

The thermodynamic stability of uranium hydrides is of broad interest and fundamental importance for understanding the hydriding corrosion of uranium, and the storage and isotope separation of hydrogen. Based on the first-principles calculations, we reveal the initial decomposition mechanism, interpret the experimental pyrolysis results, and discuss the inverse effects of temperature and hydrogen pressure (PH2) on the thermodynamic stability of ß-UH3. The decomposition mechanism of ß-UH3 is found to be closely related to the changes of U-H bonding properties in UH12 cages. Specifically, at the beginning it is difficult to break the first U-H covalent bond in each UH12 cage, which brings in the existence of a concave region in the experimental PH2-C-T curve; however, it boosts the itinerant character of U-5f electrons. Thereafter, the formation energy of H-vacancies in the degraded UH11 cages is almost changeless when the H/U atom ratio decreases, resulting in the van't Hoff plateau of the PH2-C-T curve. Based on the above mechanisms, we propose a theoretical method to evaluate the thermodynamic stability of ß-UH3. The calculated PH2-C-T curve is consistent with experiment, showing that temperature promotes ß-UH3 decomposition and PH2 plays an opposite role. Moreover, this method is independent of experimental calibration and is applied to discuss the isotope effect of hydrogen in ß-UH3. This work provides new insight and a practical method for the scientific studies of uranium hydride, which is also essential to industrial applications in hydrogen isotope separation.

18.
Proc Natl Acad Sci U S A ; 117(13): 7090-7094, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32179681

RESUMEN

Electronic phase separation in complex oxides is the inhomogeneous spatial distribution of electronic phases, involving length scales much larger than those of structural defects or nonuniform distribution of chemical dopants. While experimental efforts focused on phase separation and established its correlation with nonlinear responses under external stimuli, it remains controversial whether phase separation requires quenched disorder for its realization. Early theory predicted that if perfectly "clean" samples could be grown, both phase separation and nonlinearities would be replaced by a bicritical-like phase diagram. Here, using a layer-by-layer superlattice growth technique we fabricate a fully chemically ordered "tricolor" manganite superlattice, and compare its properties with those of isovalent alloyed manganite films. Remarkably, the fully ordered manganite does not exhibit phase separation, while its presence is pronounced in the alloy. This suggests that chemical-doping-induced disorder is crucial to stabilize the potentially useful nonlinear responses of manganites, as theory predicted.

19.
Oncologist ; 27(9): 740-750, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35648074

RESUMEN

BACKGROUND: The survival impact of multi-agent (MAC) compared with single-agent (SAC) adjuvant chemotherapy (AC) in elderly patients with stage III colon cancer (CC) remains controversial. The aim of this study was to compare survival outcomes of MAC and SAC in this population utilizing the National Cancer Database (NCDB). PATIENTS AND METHODS: Patients aged ≥70 years with pathological stage III CC diagnosed in 2004-2015 were identified in the NCDB. Univariate and multivariable analyses were conducted, and Kaplan-Meier analysis and Cox proportional hazard models were used to identify associations between MAC vs. SAC and overall survival (OS). RESULTS: Among 41 707 elderly patients (≥70 years old) with stage III CC, about half (n = 20 257; 48.5%) received AC; the majority (n = 12 923, 63.8%) received MAC. The median age was 79 (range 70-90). The majority were female (n = 11 201, 55.3%), Caucasians (88%) and had moderately differentiated tumor grade (n = 12 619, 62.3%), tumor size >4 cm (11 785, 58.2%), and negative surgical margins (18 496, 91.3%). Low-risk stage III CC constituted 50.6% (n = 10 264) of the study population. High-risk stage III CC was associated with worse OS compared with low-risk disease (HR 0.35, 0.34-0.36, P < .001). Multi-agent chemotherapy was associated with a better 5-year OS compared with SAC (P < .001). High-risk stage III patients who received MAC vs. SAC had an OS of 4.2 vs. 3.4 years, respectively (P < .001). Low-risk stage III patients who received MAC vs. SAC had a median OS of 8.5 vs. 7 years (P < .001). In univariate and multivariable analyses, male sex, positive surgical margin, insurance and facility types, age, year of diagnosis, tumor size, and Charlson-Deyo score of >2 were associated with worse OS (P < .05). CONCLUSIONS: Any adjuvant chemotherapy has a trend of survival benefits. Multi-agent chemotherapy seems to have an enhanced benefit in the 70-75 age group. Multi-agent chemotherapy seemed to have similar efficacy as SAC in those aged >76 years.


Asunto(s)
Neoplasias del Colon , Anciano , Quimioterapia Adyuvante/efectos adversos , Neoplasias del Colon/patología , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Márgenes de Escisión , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
20.
Artículo en Inglés | MEDLINE | ID: mdl-35687660

RESUMEN

A novel ligninase-producing actinomycete, designated strain NEAU-G4T, was isolated from a soil sample and subjected to a polyphasic taxonomic study to establish its status. According to 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Nocardia, with the highest sequence similarity to Nocardia ignorata DSM 44496T (99.2 %). The whole-cell sugars contained galactose and arabinose. The amino acid of the cell wall was determined to be meso-diaminopimelic acid. The major fatty acids (>10 %) were C16 : 0, C18 : 1 ω9c, C18 : 0 and C16 : 1 ω7c. The predominant menaquinone was identified as MK-8(H6, ω-cycl). The major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Strain NEAU-G4T had a draft genome size of 6 405 167 bp, annotated with 5815 protein-coding genes. The DNA G+C content was 67.6 mol%. Phylogenetic analysis using the 16S rRNA gene and whole-genome sequences showed that strain NEAU-G4T formed a stable phyletic line with N. ignorata DSM 44496T. The digital DNA-DNA hybridization and average nucleotide identity values between them were 63.7 % (60.8-66.5 %) and 95.5 %, respectively. Moreover, genomic analysis indicated that strain NEAU-G4T had the potential to degrade lignin and produce bioactive compounds. On the basis of genotypic analysis, physiological data, as well as phenotypic and chemotaxonomic characterizations, it is concluded that the organism be classified as representing a novel species of the genus Nocardia, for which the name Nocardia rosealba sp. nov. is proposed. The type strain is NEAU-G4T (=CCTCC AA 2020038T=DSM 111936T).


Asunto(s)
Actinobacteria , Nocardia , Actinobacteria/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Oxigenasas , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA