RESUMEN
Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.
Asunto(s)
Movimiento Celular , Vesículas Extracelulares , Melanoma , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Humanos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular/efectos de los fármacos , Vemurafenib/farmacología , Pirimidinonas/farmacología , Piridonas/farmacología , Piridonas/uso terapéutico , Imidazoles/farmacología , Oximas/farmacologíaRESUMEN
BACKGROUND: Finding and registering the maxillary-mandibular jaw relation is crucial in dental practice. Several comparative studies have been conducted to investigate the reproducibility and accuracy of techniques for determining the centric relation (CR) position of the mandible. The aim of our study was to determine which of seven different CR determination methods had the smallest deviation from the theoretical zero with the help of a digital mandibular motion analyser. The chosen theoretical zero position, the maximal intercuspal position (MIP), is the most reproducible and widely used position. METHODS: Thirty-four volunteers (24 females and 10 males) with a mean (SD) age of 29.1 (± 7.3) years with a negative history of temporomandibular disorder (TMD) participated in the study. A digital mandibular motion analyser was used to register the condylar position after the use of each technique for the determination of CR. The calibration was performed to the maximal intercuspal position (MIP) for each volunteer. The investigated techniques were (A) the gothic arch tracer, (B) the adduction field method, (C) Dawson's bimanual manipulation, (D) the patient placing the tongue tip on the palatal rugae, (E) the patient placing the tongue tip to the border of the hard and soft palate, (F) the patient actively pulling the chin backwards, and (G) the examiner pushing the patient's chin back. RESULTS: The position of the mandibular condyle was illustrated in a three-dimensional coordinate system, where the origin represented the MIP. Among the seven methods examined, five showed significant deviations compared to the MIP. Among these, two methods resulted in posterior deviation of the condyles. Methods C and E coincided with the MIP in all directions. CONCLUSIONS: Within the limitations of our study, we found that the smallest deviations from our theoretical zero (MIP) among the investigated centric relation determining methods were obtained with the bimanual mandibular manipulation technique derived from Dawson and the placement of the tongue tip on the border of the hard and soft palate (linguomandibular homotrophy theory).
Asunto(s)
Mandíbula , Cóndilo Mandibular , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Relación Céntrica , Reproducibilidad de los Resultados , Mentón , Registro de la Relación MaxilomandibularRESUMEN
Cancer-related immunity plays a significant role in the outcome of ovarian cancer, but the exact mechanisms are not fully explored. A retrospective, real-life observational study was conducted including 57 advanced ovarian cancer patients. Immunohistochemistry for CD4+, CD8+, and CD45+ was used for assessing tumor-infiltrating immune cells. Furthermore, an immune-related gene expression assay was performed on 12-10 samples from patients with less than and more than 1-year overall survival (OS), respectively. A higher number of CD4+ (p = 0.0028) and CD45+ (p = 0.0221) immune cells within the tumor microenvironment were associated with longer OS of patients. In a multivariate setting, higher CD4+ T cell infiltration predicted longer OS (p = 0.0392). Twenty-three differentially expressed genes-involved in antigen presentation, costimulatory signaling, matrix remodeling, metastasis formation, and myeloid cell activity-were found when comparing the prognostic groups. It was found that tumor-infiltrating immune cell counts are associated with peculiar gene expression patterns and bear prognostic information in ovarian cancer. SOX11 expression emerged and was validated as a predictive marker for OS.
RESUMEN
The RAS/RAF and PI3K/Akt pathways play a key regulatory role in cancer and are often hit by oncogenic mutations. Despite molecular targeting, the long-term success of monotherapy is often hampered by de novo or acquired resistance. In the case of concurrent mutations in both pathways, horizontal combination could be a reasonable approach. In our study, we investigated the MEK inhibitor selumetinib and PI3K/mTOR dual inhibitor BEZ235 alone and in combination in BRAF-only mutant and BRAF + PI3K/PTEN double mutant cancer cells using short- and long-term 2D viability assays, spheroid assays, and immunoblots. In the 2D assays, selumetinib was more effective on BRAF-only mutant lines when compared to BRAF + PI3K/PTEN double mutants. Furthermore, combination therapy had an additive effect in most of the lines while synergism was observed in two of the double mutants. Importantly, in the SW1417 BRAF + PI3K double mutant cells, synergism was also confirmed in the spheroid and in the in vivo model. Mechanistically, p-Akt level decreased only in the SW1417 cell line after combination treatment. In conclusion, the presence of concurrent mutations alone did not predict a stronger response to combination treatment. Therefore, additional investigations are warranted to identify predictive factors that can select patients who can benefit from the horizontal combinational inhibition of these two pathways.
Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Imidazoles/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Melanoma/metabolismo , Ratones , Ratones Desnudos , Ratones SCID , Mutación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Esferoides Celulares/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Acquired resistance during BRAF inhibitor therapy remains a major challenge for melanoma treatment. Accordingly, we evaluated the phenotypical and molecular changes of isogeneic human V600E BRAF-mutant melanoma cell line pairs pre- and post-treatment with vemurafenib. Three treatment naïve lines were subjected to in vitro long-term vemurafenib treatment while three pairs were pre- and post-treatment patient-derived lines. Molecular and phenotypical changes were assessed by Sulforhodamine-B (SRB) assay, quantitative RT-PCR (q-RT-PCR), immunoblot, and time-lapse microscopy. We found that five out of six post-treatment cells had higher migration activity than pretreatment cells. However, no unequivocal correlation between increased migration and classic epithelial-mesenchymal transition (EMT) markers could be identified. In fast migrating cells, the microphthalmia-associated transcription factor (MITF) and epidermal growth factor receptor (EGFR) mRNA levels were considerably lower and significantly higher, respectively. Interestingly, high EGFR expression was associated with elevated migration but not with proliferation. Cells with high EGFR expression showed significantly decreased sensitivity to vemurafenib treatment, and had higher Erk activation and FRA-1 expression. Importantly, melanoma cells with higher EGFR expression were more resistant to the EGFR inhibitor erlotinib treatment than cells with lower expression, with respect to both proliferation and migration inhibition. Finally, EGFR-high melanoma cells were characterized by higher PD-L1 expression, which might in turn indicate that immunotherapy may be an effective approach in these cases.
Asunto(s)
Movimiento Celular , Receptores ErbB/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Vemurafenib/uso terapéutico , Adulto , Anciano , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Masculino , Melanoma/genética , Persona de Mediana Edad , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas B-raf/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vemurafenib/farmacologíaRESUMEN
Malignant melanoma is one of the most metastatic cancer types, and despite recent success with novel treatment strategies, there is still a group of patients who do not respond to any therapies. Earlier, the prenylation inhibitor hydrophilic bisphosphonate zoledronic acid (ZA) was found to inhibit melanoma growth in vitro, but only a weaker effect was observed in vivo due to its hydrophilic properties. Recently, lipophilic bisphosphonates (such as BPH1222) were developed. Accordingly, for the first time, we compared the effect of BPH1222 to ZA in eight melanoma lines using viability, cell-cycle, clonogenic and spheroid assays, videomicroscopy, immunoblot, and xenograft experiments. Based on 2D and spheroid assays, the majority of cell lines were more sensitive to BPH. The activation of Akt and S6 proteins, but not Erk, was inhibited by BPH. Additionally, BPH had a stronger apoptotic effect than ZA, and the changes of Rheb showed a correlation with apoptosis. In vitro, only M24met cells were more sensitive to ZA than to BPH; however, in vivo growth of M24met was inhibited more strongly by BPH. Here, we present that lipophilic BPH is more effective on melanoma cells than ZA and identify the PI3K pathway, particularly Rheb as an important mediator of growth inhibition.
Asunto(s)
Antineoplásicos/farmacología , Conservadores de la Densidad Ósea/farmacología , Difosfonatos/farmacología , Melanoma/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Melanoma/tratamiento farmacológico , Melanoma/etiología , Melanoma/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Malignant pleural mesothelioma (MPM), an aggressive malignancy affecting pleural surfaces, occurs in three main histological subtypes. The epithelioid and sarcomatoid subtypes are characterized by cuboid and fibroblastoid cells, respectively. The biphasic subtype contains a mixture of both. The sarcomatoid subtype expresses markers of epithelial-mesenchymal transition (EMT) and confers the worst prognosis, but the signals and pathways controlling EMT in MPM are not well understood. We demonstrate that treatment with FGF2 or EGF induced a fibroblastoid morphology in several cell lines from biphasic MPM, accompanied by scattering, decreased cell adhesion and increased invasiveness. This depended on the MAP-kinase pathway but was independent of TGFß or PI3-kinase signaling. In addition to changes in known EMT markers, microarray analysis demonstrated differential expression of MMP1, ESM1, ETV4, PDL1 and BDKR2B in response to both growth factors and in epithelioid versus sarcomatoid MPM. Inhibition of MMP1 prevented FGF2-induced scattering and invasiveness. Moreover, in MPM cells with sarcomatoid morphology, inhibition of FGF/MAP-kinase signaling induced a more epithelioid morphology and gene expression pattern. Our findings suggest a critical role of the MAP-kinase axis in the morphological and behavioral plasticity of mesothelioma.
Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Neoplasias Pulmonares/patología , Mesotelioma/patología , Neoplasias Pleurales/patología , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Mesotelioma/metabolismo , Mesotelioma Maligno , Neoplasias Pleurales/metabolismo , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND: Currently, there are no available targeted therapy options for non-V600 BRAF mutated tumors. The aim of this study was to investigate the effects of RAF and MEK concurrent inhibition on tumor growth, migration, signaling and apoptosis induction in preclinical models of non-V600 BRAF mutant tumor cell lines. METHODS: Six BRAF mutated human tumor cell lines CRL5885 (G466 V), WM3629 (D594G), WM3670 (G469E), MDAMB231 (G464 V), CRL5922 (L597 V) and A375 (V600E as control) were investigated. Pan-RAF inhibitor (sorafenib or AZ628) and MEK inhibitor (selumetinib) or their combination were used in in vitro viability, video microscopy, immunoblot, cell cycle and TUNEL assays. The in vivo effects of the drugs were assessed in an orthotopic NSG mouse breast cancer model. RESULTS: All cell lines showed a significant growth inhibition with synergism in the sorafenib/AZ628 and selumetinib combination. Combination treatment resulted in higher Erk1/2 inhibition and in increased induction of apoptosis when compared to single agent treatments. However, single selumetinib treatment could cause adverse therapeutic effects, like increased cell migration in certain cells, selumetinib and sorafenib combination treatment lowered migratory capacity in all the cell lines. Importantly, combination resulted in significantly increased tumor growth inhibition in orthotropic xenografts of MDAMB231 cells when compared to sorafenib - but not to selumetinib - treatment. CONCLUSIONS: Our data suggests that combined blocking of RAF and MEK may achieve increased therapeutic response in non-V600 BRAF mutant tumors.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinasas raf/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Mutación , Neoplasias/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Oncogenic mutations of BRAF lead to constitutive ERK activity that supports melanoma cell growth and survival. While Ca2+ signaling is a well-known regulator of tumor progression, the crosstalk between Ca2+ signaling and the Ras-BRAF-MEK-ERK pathway is much less explored. Here we show that in BRAF mutant melanoma cells the abundance of the plasma membrane Ca2+ ATPase isoform 4b (PMCA4b, ATP2B4) is low at baseline but markedly elevated by treatment with the mutant BRAF specific inhibitor vemurafenib. In line with these findings gene expression microarray data also shows decreased PMCA4b expression in cutaneous melanoma when compared to benign nevi. The MEK inhibitor selumetinib-similarly to that of the BRAF-specific inhibitor-also increases PMCA4b levels in both BRAF and NRAS mutant melanoma cells suggesting that the MAPK pathway is involved in the regulation of PMCA4b expression. The increased abundance of PMCA4b in the plasma membrane enhances [Ca2+ ]i clearance from cells after Ca2+ entry. Moreover we show that both vemurafenib treatment and PMCA4b overexpression induce marked inhibition of migration of BRAF mutant melanoma cells. Importantly, reduced migration of PMCA4b expressing BRAF mutant cells is associated with a marked decrease in their metastatic potential in vivo. Taken together, our data reveal an important crosstalk between Ca2+ signaling and the MAPK pathway through the regulation of PMCA4b expression and suggest that PMCA4b is a previously unrecognized metastasis suppressor.
Asunto(s)
Movimiento Celular/genética , Melanoma/genética , Mutación , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Animales , Western Blotting , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/metabolismo , Melanoma/patología , Ratones SCID , Microscopía Confocal , Metástasis de la Neoplasia , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Sulfonamidas/farmacología , Trasplante Heterólogo , VemurafenibRESUMEN
Malignant pleural mesothelioma (MPM) is a devastating malignancy characterized by invasive growth and rapid recurrence. The identification and inhibition of molecular components leading to this migratory and invasive phenotype are thus essential. Accordingly, a genome-wide expression array analysis was performed on MPM cell lines and a set of 139 genes was identified as differentially expressed in cells with high versus low migratory activity. Reduced expression of the novel tumour suppressor integrin α7 (ITGA7) was found in highly motile cells. A significant negative correlation was observed between ITGA7 transcript levels and average displacement of cells. Forced overexpression of ITGA7 in MPM cells with low endogenous ITGA7 expression inhibited cell motility, providing direct evidence for the regulatory role of ITGA7 in MPM cell migration. MPM cells showed decreased ITGA7 expressions at both transcription and protein levels when compared to non-malignant mesothelial cells. The majority of MPM cell cultures displayed hypermethylation of the ITGA7 promoter when compared to mesothelial cultures. A statistically significant negative correlation between ITGA7 methylation and ITGA7 expression was also observed in MPM cells. While normal human pleura samples unambiguously expressed ITGA7, a varying level of expression was found in a panel of 200 human MPM samples. In multivariate analysis, ITGA7 expression was found to be an independent prognostic factor. Although there was no correlation between histological subtypes and ITGA7 expression, importantly, patients with high tumour cell ITGA7 expression had an increased median overall survival compared to the low- or no-expression groups (463 versus 278 days). In conclusion, our data suggest that ITGA7 is an epigenetically regulated tumour suppressor gene and a prognostic factor in human MPM.
Asunto(s)
Antígenos CD/metabolismo , Movimiento Celular , Epigénesis Genética , Cadenas alfa de Integrinas/metabolismo , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurales/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Antígenos CD/genética , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Cadenas alfa de Integrinas/genética , Estimación de Kaplan-Meier , Laminina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Mesotelioma/genética , Mesotelioma/mortalidad , Mesotelioma/patología , Mesotelioma Maligno , Análisis Multivariante , Invasividad Neoplásica , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pleurales/genética , Neoplasias Pleurales/mortalidad , Neoplasias Pleurales/patología , Pronóstico , Regiones Promotoras Genéticas , Modelos de Riesgos Proporcionales , ARN Mensajero/metabolismo , Factores de Riesgo , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genéticaRESUMEN
The high mortality of solid tumors can be attributed to their invasive and metastatic potential that is based on their migration and proliferation. Importantly, growth factor receptor (GF) signaling pathways regulating proliferation and migration are often affected by oncogenic mutations and are important targets for antitumor therapy. We found positive correlation between migration and proliferation in melanoma and lung cancer cells using videomicroscopy, not supporting the "go or grow" hypothesis. Furthermore, the invasion into collagen I matrices from brain tumor spheroids was not impaired upon the inhibition of proliferation. Sensitivity of human melanoma cells towards EGF and FGF2 treatment but not against GF receptor tyrosine kinase inhibitors was oncogenic BRAF or NRAS mutation status dependent. Prenylation inhibition failed to decrease clonogenic growth in BRAF mutant but PTEN wild-type melanoma lines but increased migration in BRAF-mutant cells. In certain mesothelioma cells, activin signaling showed a pro-tumorigenic effect suggesting activin as a valuable candidate for therapeutic interference. In summary, our findings demonstrate that proliferation is neither an obstacle nor a prerequisite for tumor cell invasion. Furthermore, the specific oncogenic mutations may differentially regulate migration and proliferation of tumor cells. Therefore, they are not only therapeutic targets but can also profoundly influence the efficacy of various therapies.
Asunto(s)
Receptores ErbB/metabolismo , Melanoma/genética , Melanoma/metabolismo , Mutación/genética , Carcinógenos , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Humanos , Proteínas Proto-Oncogénicas B-raf , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de SeñalRESUMEN
RATIONALE: Malignant pleural mesothelioma is an aggressive malignancy characterized by frequent resistance to chemo- and radiotherapy, poor outcome, and limited therapeutic options. Fibroblast growth factors (FGFs) and their receptors are potential targets for cancer therapy, but their significance in mesothelioma has remained largely undefined. OBJECTIVES: To investigate the antimesothelioma potential of FGF receptor 1 (FGFR1) inhibition. METHODS: Expression of FGFs and their receptors was analyzed in mesothelioma cell lines and tissue specimens. Several cell models were used to investigate FGFR1 inhibition in vitro and in combination with cisplatin and irradiation. Mouse intraperitoneal xenotransplant models were used for in vivo validation. MEASUREMENTS AND MAIN RESULTS: FGFR1, FGF2, and FGF18 were overexpressed in mesothelioma. Stimulation with FGF2 led to increased cell proliferation, migration, and transition to a more sarcomatoid phenotype in subsets of mesothelioma cell lines. In contrast, inhibition of FGFR1 by a specific kinase inhibitor or a dominant-negative FGFR1 construct led to significantly decreased proliferation, clonogenicity, migration, spheroid formation, and G1 cell cycle arrest in several mesothelioma cell lines, accompanied by apoptosis induction and decreased mitogen-activated protein kinase pathway activity. Reduced tumor growth, proliferation, mitogenic signaling, and apoptosis induction were observed in vivo. Inhibition of FGFR1 synergistically enhanced the cytotoxic effects of ionizing radiation and cisplatin. CONCLUSIONS: Our data suggest that the malignant phenotype of mesothelioma cells depends on intact FGF signals, which should be considered as therapeutic targets with a promising chemo- and radiosensitizing potential.
Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Mesotelioma/tratamiento farmacológico , Mesotelioma/radioterapia , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mesotelioma Maligno , Ratones , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The "go or grow" hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive.
Asunto(s)
Movimiento Celular , Citocinesis , Modelos Biológicos , Neoplasias/patología , Proliferación Celular , Humanos , Células Tumorales CultivadasRESUMEN
Cancer-related immunity has been identified as playing a key role in the outcome of colorectal cancer (CRC); however, the exact mechanisms are only partially understood. In this study, we evaluated a total of 242 surgical specimen of CRC patients using tissue microarrays and immunohistochemistry to evaluate tumor infiltrating immune cells (CD3, CD4, CD8, CD20, CD23, CD45 and CD56) and immune checkpoint markers (CTLA-4, PD-L1, PD-1) in systematically selected tumor regions and their corresponding lymph nodes, as well as in liver metastases. Additionally, an immune panel gene expression assay was performed on 12 primary tumors and 12 consecutive liver metastases. A higher number of natural killer cells and more mature B cells along with PD-1+ expressing cells were observed in the main tumor area as compared to metastases. A higher number of metastatic lymph nodes were associated with significantly lower B cell counts. With more advanced lymph node metastatic status, higher leukocyte-particularly T cell numbers-were observed. Eleven differentially expressed immune-related genes were found between primary tumors and liver metastases. Also, alterations of the innate immune response and the tumor necrosis factor superfamily pathways had been identified.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Receptor de Muerte Celular Programada 1RESUMEN
Malignant pleural mesothelioma (MPM) is a rare type of cancer with a grim prognosis. So far, no targetable oncogenic mutation was identified in MPM and biomarkers with predictive value toward drug sensitivity or resistance are also lacking. Nintedanib (BIBF1120) is a small-molecule tyrosine kinase inhibitor that showed promising efficacy preclinically and in phase II trial in MPM as an angiogenesis inhibitor combined with chemotherapy. However, the extended phase III trial failed. In this study, we investigated the effect of nintedanib on one of its targets, the SRC kinase, in two commercial and six novel MPM cell lines. Surprisingly, nintedanib treatment did not inhibit SRC activation in MPM cells and even increased phosphorylation of SRC in several cell lines. Combination treatment with the SRC inhibitor dasatinib could reverse this effect in all cell lines, however, the cellular response was dependent on the drug sensitivity of the cells. In 2 cell lines, with high sensitivity to both nintedanib and dasatinib, the drug combination had no synergistic effect but cell death was initiated. In 2 cell lines insensitive to nintedanib combination treatment reduced cell viability synergisticaly without cell death. In contrast, in these cells both treatments increased the autophagic flux assessed by degradation of the autophagy substrate p62 and increased presence of LC3B-II, increased number of GFP-LC3 puncta and decreased readings of the HiBiT-LC3 reporter. Additionaly, autophagy was synergistically promoted by the combined treatment. At the transcriptional level, analysis of lysosomal biogenesis regulator Transcription Factor EB (TFEB) showed that in all cell lines treated with nintedanib and to a lesser extent, with dasatinib, it became dephosphorylated and accumulated in the nucleus. Interestingly, the expression of certain known TFEB target genes implicated in autophagy or lysosomal biogenesis were significantly modified only in 1 cell line. Finally, we showed that autophagy induction in our MPM cell lines panel by nintedanib and dasatinib is independent of the AKT/mTOR and the ERK pathways. Our study reveals that autophagy can serve as a cytoprotective mechanism following nintedanib or dasatinib treatments in MPM cells.
RESUMEN
Our present oncological treatment arsenal has limited treatment options for pancreatic ductal adenocarcinoma (PDAC). Extended reviews have shown the benefits of hyperthermia for PDAC, supporting the perspectives with the improvements of the treatment possibilities. METHODS: A retrospective single-center case-control study was conducted with the inclusion of 78 inoperable PDAC patients. Age-, sex-, chemotherapy-, stage-, and ascites formation-matched patients were assigned to two equal groups based on the application of modulated electro-hyperthermia (mEHT). The EHY2030 mEHT device was used. RESULTS: A trend in favor of mEHT was found in overall survival (p = 0.1420). To further evaluate the potential beneficial effects of mEHT, the presence of distant metastasis or ascites in the patients' oncological history was investigated. Of note, mEHT treatment had a favorable effect on patients' overall survival in metastatic disease (p = 0.0154), while less abdominal fluid responded to the mEHT treatment in a more efficient way (p ≤ 0.0138). CONCLUSION: mEHT treatment was associated with improved overall survival in PDAC in our single-center retrospective case-control study. The outcome measures encourage us to design a randomized prospective clinical study to further confirm the efficiency of mEHT in this patient cohort.
RESUMEN
Liposomes containing copper and the copper ionophore neocuproine were prepared and characterized for in vitro and in vivo anticancer activity. Thermosensitive PEGylated liposomes were prepared with different molar ratios of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and hydrogenated soybean phosphatidylcholine (HSPC) in the presence of copper(II) ions. Optimal, temperature dependent drug release was obtained at 70:30 DPPC to HSPC weight ratio. Neocuproine (applied at 0.2 mol to 1 mol phospholipid) was encapsulated through a pH gradient while using unbuffered solution at pH 4.5 inside the liposomes, and 100 mM HEPES buffer pH 7.8 outside the liposomes. Copper ions were present in excess, yielding 0.5 mM copper-(neocuproine)2 complex and 0.5 mM free copper. Pre-heating to 45 °C increased the toxicity of the heat-sensitive liposomes in short-term in vitro experiments, whereas at 72 h all investigated liposomes exhibited similar in vitro toxicity to the copper(II)-neocuproine complex (1:1 ratio). Thermosensitive liposomes were found to be more effective in reducing tumor growth in BALB/c mice engrafted with C26 cancer cells, regardless of the mild hyperthermic treatment. Copper uptake of the tumor was verified by PET/CT imaging following treatment with [64Cu]Cu-neocuproine liposomes. Taken together, our results demonstrate the feasibility of targeting a copper nanotoxin that was encapsulated in thermosensitive liposomes containing an excess of copper.
RESUMEN
While papillary thyroid cancer (PTC) has largely favorable prognosis, anaplastic thyroid cancer (ATC) is a rare but extremely aggressive malignancy with grim clinical outcome. Even though new therapeutic options are emerging for ATC, additional preclinical models and novel combinations are needed for specific subsets of patients. We established a novel cell line (PF49) from the malignant pleural effusion of a 68-year-old male patient with ATC that rapidly transformed from a BRAF and TERT promoter mutant PTC. PF49 cells demonstrated a robust migratory activity in vitro and strong invasive capacity in vivo in a pleural carcinosis model. Combined BRAF and MEK inhibition decreased the proliferation and migration of PF49 cells, however could not induce cell death. Importantly, HDAC inhibitor treatment with SAHA or valproic acid induced cell cycle arrest and strongly increased PD-L1 expression of the tumor cells. Induction of PD-L1 expression was also present when paclitaxel-cisplatin chemotherapeutic treatment was combined with HDAC inhibitor treatment. Increased PD-L1 expression after HDAC inhibition was recapitulated in an international ATC cell model. Our data suggest that HDAC inhibition alone or in combination with standard chemotherapy may potentiate anaplastic thyroid cancer cells for immunotherapy.
Asunto(s)
Antígeno B7-H1/biosíntesis , Línea Celular Tumoral/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/patología , Anciano , Animales , Antígeno B7-H1/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Masculino , Ratones , Ratones SCID , Cáncer Papilar Tiroideo/patología , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Bisphosphonates, despite proven antitumor effect in vitro in many tumor types, are currently used only for treatment of osteoporosis and bone metastasis. Colorectal cancer is the third most commonly diagnosed type of cancer and lacks targeted therapy for RAS or RAF mutation carrying cases. A new lipophilic bisphosphonate showed promising results in lung cancer models, but their effect on colorectal cancer cells was not investigated excessively. Antitumor effects and impact on RAS-related signalization of zoledronic acid (ZA) and a lipophilic bisphosphonate (BPH1222) were investigated on 7 human colorectal cancer cell lines in vitro and in vivo. Furthermore, mutant KRAS dependent effect of prenylation inhibition was investigated using isogeneic cell lines. Both bisphosphonates reduced cell viability in vitro in a dose-dependent manner. Both compounds changed cell cycle distribution similarly by increasing the proportion of cells either in the S or in the subG1 phase or both. However, BPH1222 exerted higher inhibitory effect on spheroid growth than ZA. Interestingly, we found profound alterations in phosphorylation level of Erk and S6 proteins upon ZA or BPH1222 treatment. Furthermore, investigation of a mutant KRAS isogeneic model system suggests that the drugs interfere also with the mutant KRAS proteins. In vivo experiments with KRAS mutant xenograft model also revealed growth inhibitory potential of bisphosphonate treatment. Our results show that lipophilic bisphosphonates might extend the therapeutic spectrum of bisphosphonate drugs and could be considered as additional treatment approaches in colorectal cancer.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/patología , Difosfonatos/farmacología , Ácido Zoledrónico/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones SCID , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
No tyrosine kinase inhibitors are approved for malignant pleural mesothelioma (MPM). Preclinical studies identified focal adhesion kinase (FAK) as a target in MPM. Accordingly, we assessed the novel, highly selective FAK inhibitor (BI 853520) in 2D and 3D cultures and in vivo. IC50 values were measured by adherent cell viability assay. Cell migration and 3D growth were quantified by video microscopy and spheroid formation, respectively. Phosphorylation of FAK, Akt, S6, and Erk was measured by immunoblot. The mRNA expression of the putative tumor stem cell markers SOX2, Nanog, CD44, ALDH1, c-myc, and Oct4 was analyzed by qPCR. Cell proliferation, apoptosis, and tumor tissue microvessel density (MVD) were investigated in orthotopic MPM xenografts. In all 12 MPM cell lines, IC50 exceeded 5 µM and loss of NF2 did not correlate with sensitivity. No synergism was found with cisplatin in adherent cells. BI 853520 decreased migration in 3 out of 4 cell lines. FAK phosphorylation was reduced upon treatment but activation of Erk, Akt, or S6 remained unaffected. Nevertheless, BI 853520 inhibited spheroid growth and significantly reduced tumor weight, cell proliferation, and MVD in vivo. BI 853520 has limited effect in adherent cultures but demonstrates potent activity in spheroids and in orthotopic tumors in vivo. Based on our findings, further studies are warranted to explore the clinical utility of BI 853520 in human MPM. KEY MESSAGES: Response to FAK inhibition in MPM is independent of NF2 expression or histotype. FAK inhibition strongly interfered with MPM spheroid formation. BI 853520 has been shown to exert anti-tumor effect in MPM.