Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35408236

RESUMEN

Multiple fault identification in induction motors is essential in industrial processes due to the high costs that unexpected failures can cause. In real cases, the motor could present multiple faults, influencing systems that classify isolated failures. This paper presents a novel methodology for detecting multiple motor faults based on quaternion signal analysis (QSA). This method couples the measured signals from the motor current and the triaxial accelerometer mounted on the induction motor chassis to the quaternion coefficients. The QSA calculates the quaternion rotation and applies statistics such as mean, variance, kurtosis, skewness, standard deviation, root mean square, and shape factor to obtain their features. After that, four classification algorithms are applied to predict motor states. The results of the QSA method are validated for ten classes: four single classes (healthy condition, unbalanced pulley, bearing fault, and half-broken bar) and six combined classes. The proposed method achieves high accuracy and performance compared to similar works in the state of the art.


Asunto(s)
Algoritmos , Industrias
2.
Sensors (Basel) ; 21(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064191

RESUMEN

One of the most critical devices in an electrical system is the transformer. It is continuously under different electrical and mechanical stresses that can produce failures in its components and other electrical network devices. The short-circuited turns (SCTs) are a common winding failure. This type of fault has been widely studied in literature employing the vibration signals produced in the transformer. Although promising results have been obtained, it is not a trivial task if different severity levels and a common high-level noise are considered. This paper presents a methodology based on statistical time features (STFs) and support vector machines (SVM) to diagnose a transformer under several SCTs conditions. As STFs, 19 indicators from the transformer vibration signals are computed; then, the most discriminant features are selected using the Fisher score analysis, and the linear discriminant analysis is used for dimension reduction. Finally, a support vector machine classifier is employed to carry out the diagnosis in an automatic way. Once the methodology has been developed, it is implemented on a field-programmable gate array (FPGA) to provide a system-on-a-chip solution. A modified transformer capable of emulating different SCTs severities is employed to validate and test the methodology and its FPGA implementation. Results demonstrate the effectiveness of the proposal for diagnosing the transformer condition as an accuracy of 96.82% is obtained.

3.
ScientificWorldJournal ; 2014: 908140, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24678281

RESUMEN

Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos
4.
ScientificWorldJournal ; 2014: 587671, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24683346

RESUMEN

This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.


Asunto(s)
Ruido , Procesamiento de Señales Asistido por Computador , Algoritmos , Vibración
5.
Sensors (Basel) ; 11(8): 7710-23, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164040

RESUMEN

The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application.


Asunto(s)
Técnicas Biosensibles/métodos , Interferometría/métodos , Movimiento (Física) , Algoritmos , Computadores , Procesamiento de Imagen Asistido por Computador , Internet , Modelos Estadísticos , Óptica y Fotónica , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA