Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(16): 3310-3322.e6, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34416138

RESUMEN

Amino acid starvation is sensed by Escherichia coli RelA and Bacillus subtilis Rel through monitoring the aminoacylation status of ribosomal A-site tRNA. These enzymes are positively regulated by their product-the alarmone nucleotide (p)ppGpp-through an unknown mechanism. The (p)ppGpp-synthetic activity of Rel/RelA is controlled via auto-inhibition by the hydrolase/pseudo-hydrolase (HD/pseudo-HD) domain within the enzymatic N-terminal domain region (NTD). We localize the allosteric pppGpp site to the interface between the SYNTH and pseudo-HD/HD domains, with the alarmone stimulating Rel/RelA by exploiting intra-NTD autoinhibition dynamics. We show that without stimulation by pppGpp, starved ribosomes cannot efficiently activate Rel/RelA. Compromised activation by pppGpp ablates Rel/RelA function in vivo, suggesting that regulation by the second messenger (p)ppGpp is necessary for mounting an acute starvation response via coordinated enzymatic activity of individual Rel/RelA molecules. Control by (p)ppGpp is lacking in the E. coli (p)ppGpp synthetase SpoT, thus explaining its weak synthetase activity.


Asunto(s)
Regulación Alostérica/genética , Proteínas de Escherichia coli/genética , GTP Pirofosfoquinasa/genética , Guanosina Pentafosfato/genética , Pirofosfatasas/genética , Aminoácidos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Dominio Catalítico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolasas/genética , Ribosomas/genética , Ribosomas/metabolismo , Inanición/genética , Inanición/metabolismo
2.
Mol Cell ; 81(15): 3160-3170.e9, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34174184

RESUMEN

RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.


Asunto(s)
Toxinas Bacterianas/metabolismo , Guanosina Pentafosfato/metabolismo , Ligasas/metabolismo , ARN de Transferencia/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacología , Bacilos Grampositivos Asporogénicos/química , Bacilos Grampositivos Asporogénicos/metabolismo , Guanosina Pentafosfato/química , Ligasas/química , Ligasas/genética , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Pirofosfatasas , Ribosomas/metabolismo
3.
Nature ; 612(7938): 132-140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385533

RESUMEN

Bacteria have evolved diverse immunity mechanisms to protect themselves against the constant onslaught of bacteriophages1-3. Similar to how eukaryotic innate immune systems sense foreign invaders through pathogen-associated molecular patterns4 (PAMPs), many bacterial immune systems that respond to bacteriophage infection require phage-specific triggers to be activated. However, the identities of such triggers and the sensing mechanisms remain largely unknown. Here we identify and investigate the anti-phage function of CapRelSJ46, a fused toxin-antitoxin system that protects Escherichia coli against diverse phages. Using genetic, biochemical and structural analyses, we demonstrate that the C-terminal domain of CapRelSJ46 regulates the toxic N-terminal region, serving as both antitoxin and phage infection sensor. Following infection by certain phages, newly synthesized major capsid protein binds directly to the C-terminal domain of CapRelSJ46 to relieve autoinhibition, enabling the toxin domain to pyrophosphorylate tRNAs, which blocks translation to restrict viral infection. Collectively, our results reveal the molecular mechanism by which a bacterial immune system directly senses a conserved, essential component of phages, suggesting a PAMP-like sensing model for toxin-antitoxin-mediated innate immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers are engaged in a 'Red Queen conflict'5, revealing a new front in the intense coevolutionary battle between phages and bacteria. Given that capsid proteins of some eukaryotic viruses are known to stimulate innate immune signalling in mammalian hosts6-10, our results reveal a deeply conserved facet of immunity.


Asunto(s)
Bacteriófagos , Proteínas de la Cápside , Escherichia coli , Inmunidad Innata , Animales , Antitoxinas/inmunología , Bacteriófagos/inmunología , Proteínas de la Cápside/inmunología , Escherichia coli/inmunología , Escherichia coli/virología , Eucariontes/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología
4.
Nat Chem Biol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834893

RESUMEN

Toxic small alarmone synthetase (toxSAS) enzymes constitute a family of bacterial effectors present in toxin-antitoxin and secretion systems. toxSASs act through either translation inhibition mediated by pyrophosphorylation of transfer RNA (tRNA) CCA ends or synthesis of the toxic alarmone adenosine pentaphosphate ((pp)pApp) and adenosine triphosphate (ATP) depletion, exemplified by FaRel2 and FaRel, respectively. However, structural bases of toxSAS neutralization are missing. Here we show that the pseudo-Zn2+ finger domain (pZFD) of the ATfaRel2 antitoxin precludes access of ATP to the pyrophosphate donor site of the FaRel2 toxin, without affecting recruitment of the tRNA pyrophosphate acceptor. By contrast, (pp)pApp-producing toxSASs are inhibited by Tis1 antitoxin domains though occlusion of the pyrophosphate acceptor-binding site. Consequently, the auxiliary pZFD of AT2faRel is dispensable for FaRel neutralization. Collectively, our study establishes the general principles of toxSAS inhibition by structured antitoxin domains, with the control strategy directly coupled to toxSAS substrate specificity.

5.
Proc Natl Acad Sci U S A ; 120(33): e2305393120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37556498

RESUMEN

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Antitoxinas/genética , Toxinas Bacterianas/metabolismo , Células Procariotas/metabolismo , Operón/genética , Biología Computacional , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Nat Chem Biol ; 19(3): 334-345, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36470996

RESUMEN

Stringent factors orchestrate bacterial cell reprogramming through increasing the level of the alarmones (p)ppGpp. In Beta- and Gammaproteobacteria, SpoT hydrolyzes (p)ppGpp to counteract the synthetase activity of RelA. However, structural information about how SpoT controls the levels of (p)ppGpp is missing. Here we present the crystal structure of the hydrolase-only SpoT from Acinetobacter baumannii and uncover the mechanism of intramolecular regulation of 'long'-stringent factors. In contrast to ribosome-associated Rel/RelA that adopt an elongated structure, SpoT assumes a compact τ-shaped structure in which the regulatory domains wrap around a Core subdomain that controls the conformational state of the enzyme. The Core is key to the specialization of long RelA-SpoT homologs toward either synthesis or hydrolysis: the short and structured Core of SpoT stabilizes the τ-state priming the hydrolase domain for (p)ppGpp hydrolysis, whereas the longer, more dynamic Core domain of RelA destabilizes the τ-state priming the monofunctional RelA for efficient (p)ppGpp synthesis.


Asunto(s)
Evolución Biológica , Guanosina Pentafosfato , Conformación Molecular , Hidrolasas , Catálisis , Ligasas/metabolismo , Proteínas Bacterianas/genética
7.
Cell ; 142(1): 101-11, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603017

RESUMEN

Regulation of the phd/doc toxin-antitoxin operon involves the toxin Doc as co- or derepressor depending on the ratio between Phd and Doc, a phenomenon known as conditional cooperativity. The mechanism underlying this observed behavior is not understood. Here we show that monomeric Doc engages two Phd dimers on two unrelated binding sites. The binding of Doc to the intrinsically disordered C-terminal domain of Phd structures its N-terminal DNA-binding domain, illustrating allosteric coupling between highly disordered and highly unstable domains. This allosteric effect also couples Doc neutralization to the conditional regulation of transcription. In this way, higher levels of Doc tighten repression up to a point where the accumulation of toxin triggers the production of Phd to counteract its action. Our experiments provide the basis for understanding the mechanism of conditional cooperative regulation of transcription typical of toxin-antitoxin modules. This model may be applicable for the regulation of other biological systems.


Asunto(s)
Regulación Alostérica , Regulación de la Expresión Génica , Transcripción Genética , Proteínas Virales/metabolismo , Sitio Alostérico , Bacteriófago P1/metabolismo , ADN/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Regiones Operadoras Genéticas , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Proteínas Virales/química , Difracción de Rayos X
8.
Nat Chem Biol ; 17(9): 989-997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34341587

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is essential to maintain fluid homeostasis in key organs. Functional impairment of CFTR due to mutations in the cftr gene leads to cystic fibrosis. Here, we show that the first nucleotide-binding domain (NBD1) of CFTR can spontaneously adopt an alternate conformation that departs from the canonical NBD fold previously observed. Crystallography reveals that this conformation involves a topological reorganization of NBD1. Single-molecule fluorescence resonance energy transfer microscopy shows that the equilibrium between the conformations is regulated by adenosine triphosphate binding. However, under destabilizing conditions, such as the disease-causing mutation F508del, this conformational flexibility enables unfolding of the ß-subdomain. Our data indicate that, in wild-type CFTR, this conformational transition of NBD1 regulates channel function, but, in the presence of the F508del mutation, it allows domain misfolding and subsequent protein degradation. Our work provides a framework to design conformation-specific therapeutics to prevent noxious transitions.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Desplegamiento Proteico
9.
Nucleic Acids Res ; 49(1): 444-457, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330919

RESUMEN

In the Gram-positive Firmicute bacterium Bacillus subtilis, amino acid starvation induces synthesis of the alarmone (p)ppGpp by the RelA/SpoT Homolog factor Rel. This bifunctional enzyme is capable of both synthesizing and hydrolysing (p)ppGpp. To detect amino acid deficiency, Rel monitors the aminoacylation status of the ribosomal A-site tRNA by directly inspecting the tRNA's CCA end. Here we dissect the molecular mechanism of B. subtilis Rel. Off the ribosome, Rel predominantly assumes a 'closed' conformation with dominant (p)ppGpp hydrolysis activity. This state does not specifically select deacylated tRNA since the interaction is only moderately affected by tRNA aminoacylation. Once bound to the vacant ribosomal A-site, Rel assumes an 'open' conformation, which primes its TGS and Helical domains for specific recognition and stabilization of cognate deacylated tRNA on the ribosome. The tRNA locks Rel on the ribosome in a hyperactivated state that processively synthesises (p)ppGpp while the hydrolysis is suppressed. In stark contrast to non-specific tRNA interactions off the ribosome, tRNA-dependent Rel locking on the ribosome and activation of (p)ppGpp synthesis are highly specific and completely abrogated by tRNA aminoacylation. Binding pppGpp to a dedicated allosteric site located in the N-terminal catalytic domain region of the enzyme further enhances its synthetase activity.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Guanosina Pentafosfato/biosíntesis , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Acilación , Sitio Alostérico , Bacillus subtilis/genética , Dominio Catalítico , GTP Pirofosfoquinasa/metabolismo , Hidrólisis , Modelos Genéticos , Modelos Moleculares , Conformación Proteica , Procesamiento Postranscripcional del ARN , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(19): 10500-10510, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32345719

RESUMEN

Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.


Asunto(s)
Bacterias/crecimiento & desarrollo , Guanosina Pentafosfato/metabolismo , Sistemas Toxina-Antitoxina/fisiología , Nucleótidos de Adenina/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Bases de Datos Genéticas , Regulación Bacteriana de la Expresión Génica/genética , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Ligasas/metabolismo , Pirofosfatasas/metabolismo , Transducción de Señal , Estrés Fisiológico/fisiología
11.
Nat Chem Biol ; 16(8): 834-840, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32393900

RESUMEN

Bifunctional Rel stringent factors, the most abundant class of RelA/SpoT homologs, are ribosome-associated enzymes that transfer a pyrophosphate from ATP onto the 3' of guanosine tri-/diphosphate (GTP/GDP) to synthesize the bacterial alarmone (p)ppGpp, and also catalyze the 3' pyrophosphate hydrolysis to degrade it. The regulation of the opposing activities of Rel enzymes is a complex allosteric mechanism that remains an active research topic despite decades of research. We show that a guanine-nucleotide-switch mechanism controls catalysis by Thermus thermophilus Rel (RelTt). The binding of GDP/ATP opens the N-terminal catalytic domains (NTD) of RelTt (RelTtNTD) by stretching apart the two catalytic domains. This activates the synthetase domain and allosterically blocks hydrolysis. Conversely, binding of ppGpp to the hydrolase domain closes the NTD, burying the synthetase active site and precluding the binding of synthesis precursors. This allosteric mechanism is an activity switch that safeguards against futile cycles of alarmone synthesis and degradation.


Asunto(s)
Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Secuencia de Aminoácidos , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Regulación Bacteriana de la Expresión Génica/genética , Genes rel/genética , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Hidrolasas/metabolismo , Ligasas/metabolismo , Ligasas/fisiología , Nucleótidos/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/metabolismo
12.
Nat Chem Biol ; 15(3): 285-294, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718814

RESUMEN

GCN5-related N-acetyl-transferase (GNAT)-like enzymes from toxin-antitoxin modules are strong inhibitors of protein synthesis. Here, we present the bases of the regulatory mechanisms of ataRT, a model GNAT-toxin-antitoxin module, from toxin synthesis to its action as a transcriptional de-repressor. We show the antitoxin (AtaR) traps the toxin (AtaT) in a pre-catalytic monomeric state and precludes the effective binding of ac-CoA and its target Met-transfer RNAfMet. In the repressor complex, AtaR intrinsically disordered region interacts with AtaT at two different sites, folding into different structures, that are involved in two separate functional roles, toxin neutralization and placing the DNA-binding domains of AtaR in a binding-compatible orientation. Our data suggests AtaR neutralizes AtaT as a monomer, right after its synthesis and only the toxin-antitoxin complex formed in this way is an active repressor. Once activated by dimerization, later neutralization of the toxin results in a toxin-antitoxin complex that is not able to repress transcription.


Asunto(s)
Acetiltransferasas/metabolismo , Antitoxinas/fisiología , Sistemas Toxina-Antitoxina/fisiología , Acetiltransferasas/fisiología , Arilamina N-Acetiltransferasa , Proteínas Bacterianas , Toxinas Bacterianas/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Biosíntesis de Proteínas/fisiología , Salmonella/enzimología , Salmonella/metabolismo , Sistemas Toxina-Antitoxina/genética
13.
Nucleic Acids Res ; 47(2): 843-854, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30496454

RESUMEN

Sensory and regulatory domains allow bacteria to adequately respond to environmental changes. The regulatory ACT (Aspartokinase, Chorismate mutase and TyrA) domains are mainly found in metabolic-related proteins as well as in long (p)ppGpp synthetase/hydrolase enzymes. Here, we investigate the functional role of the ACT domain of SpoT, the only (p)ppGpp synthetase/hydrolase of Caulobacter crescentus. We show that SpoT requires the ACT domain to efficiently hydrolyze (p)ppGpp. In addition, our in vivo and in vitro data show that the phosphorylated version of EIIANtr (EIIANtr∼P) interacts directly with the ACT and inhibits the hydrolase activity of SpoT. Finally, we highlight the conservation of the ACT-dependent interaction between EIIANtr∼P and SpoT/Rel along with the phosphotransferase system (PTSNtr)-dependent regulation of (p)ppGpp accumulation upon nitrogen starvation in Sinorhizobium meliloti, a plant-associated α-proteobacterium. Thus, this work suggests that α-proteobacteria might have inherited from a common ancestor, a PTSNtr dedicated to modulate (p)ppGpp levels in response to nitrogen availability.


Asunto(s)
Caulobacter crescentus/enzimología , Guanosina Pentafosfato/metabolismo , Ligasas/química , Ligasas/metabolismo , Proteínas Bacterianas/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo , Hidrólisis , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Sinorhizobium meliloti/metabolismo
14.
Nat Chem Biol ; 13(6): 640-646, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28369041

RESUMEN

Toxin-antitoxin (TA) loci are prevalent in bacterial genomes. They are suggested to play a central role in dormancy and persister states. Under normal growth conditions, TA toxins are neutralized by their cognate antitoxins, and under stress conditions, toxins are freed and inhibit essential cellular processes using a variety of mechanisms. Here we characterize ataR-ataT, a novel TA system, from enterohemorrhagic Escherichia coli. We show that the toxin AtaT is a GNAT family enzyme that transfers an acetyl group from acetyl coenzyme A to the amine group of the methionyl aminoacyl moiety of initiator tRNA. AtaT specifically modifies Met-tRNAfMet, but no other aminoacyl-tRNAs, including the elongator Met-tRNAMet. We demonstrate that once acetylated, AcMet-tRNAfMet fails to interact with initiation factor-2 (IF2), resulting in disruption of the translation initiation complex. This work reveals a new mechanism of translation inhibition and confirms Met-tRNAfMet as a prime target to efficiently block cell growth.


Asunto(s)
N-Acetiltransferasa de Aminoácidos/metabolismo , Escherichia coli , Regulación de la Expresión Génica/genética , ARN de Transferencia de Metionina/metabolismo , Acetilación , Electroforesis en Gel Bidimensional , Modelos Biológicos , Biosíntesis de Proteínas
15.
Nucleic Acids Res ; 45(8): 4972-4983, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28334932

RESUMEN

Toxin-antitoxin (TA) modules are small operons involved in bacterial stress response and persistence. higBA operons form a family of TA modules with an inverted gene organization and a toxin belonging to the RelE/ParE superfamily. Here, we present the crystal structures of chromosomally encoded Vibrio cholerae antitoxin (VcHigA2), toxin (VcHigB2) and their complex, which show significant differences in structure and mechanisms of function compared to the higBA module from plasmid Rts1, the defining member of the family. The VcHigB2 is more closely related to Escherichia coli RelE both in terms of overall structure and the organization of its active site. VcHigB2 is neutralized by VcHigA2, a modular protein with an N-terminal intrinsically disordered toxin-neutralizing segment followed by a C-terminal helix-turn-helix dimerization and DNA binding domain. VcHigA2 binds VcHigB2 with picomolar affinity, which is mainly a consequence of entropically favorable de-solvation of a large hydrophobic binding interface and enthalpically favorable folding of the N-terminal domain into an α-helix followed by a ß-strand. This interaction displaces helix α3 of VcHigB2 and at the same time induces a one-residue shift in the register of ß-strand ß3, thereby flipping the catalytically important Arg64 out of the active site.


Asunto(s)
Antitoxinas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Complejos Multiproteicos/química , Conformación Proteica en Lámina beta , Ribonucleasas/química , Ribonucleasas/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Topoisomerasa de ADN IV/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Complejos Multiproteicos/genética , Unión Proteica , Multimerización de Proteína , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/química , Ribosomas/genética , Vibrio cholerae/química , Vibrio cholerae/enzimología
16.
Trends Biochem Sci ; 39(3): 121-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24507752

RESUMEN

Fic enzymes post-translationally modify proteins through AMPylation, UMPylation, phosphorylation, or phosphocholination. They have been identified across all domains of life, and they target a myriad of proteins such as eukaryotic GTPases, unstructured protein segments, and bacterial enzymes. Consequently, they play crucial roles in eukaryotic signal transduction, drug tolerance, bacterial pathogenicity, and the bacterial stress response. Structurally, they consist of an all α-helical core domain that supports and scaffolds a structurally conserved active-site loop, which catalyses the transfer of various parts of a nucleotide cofactor to proteins. Despite their diverse substrates and targets, they retain a conserved active site and reaction chemistry. This catalytic variety came to light only recently with the crystal structures of different Fic enzymes.


Asunto(s)
Bacterias , Proteínas Bacterianas , GTP Fosfohidrolasas , Modificación Traduccional de las Proteínas/fisiología , Transferasas , Animales , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transferasas/química , Transferasas/genética , Transferasas/metabolismo
17.
Nat Chem Biol ; 12(7): 490-6, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27159580

RESUMEN

Conditional cooperativity is a common mechanism involved in transcriptional regulation of prokaryotic type II toxin-antitoxin operons and is intricately related to bacterial persistence. It allows the toxin component of a toxin-antitoxin module to act as a co-repressor at low doses of toxin as compared to antitoxin. When toxin level exceeds a certain threshold, however, the toxin becomes a de-repressor. Most antitoxins contain an intrinsically disordered region (IDR) that typically is involved in toxin neutralization and repressor complex formation. To address how the antitoxin IDR is involved in transcription regulation, we studied the phd-doc operon from bacteriophage P1. We provide evidence that the IDR of Phd provides an entropic barrier precluding full operon repression in the absence of Doc. Binding of Doc results in a cooperativity switch and consequent strong operon repression, enabling context-specific modulation of the regulatory process. Variations of this theme are likely to be a common mechanism in the autoregulation of bacterial operons that involve intrinsically disordered regions.


Asunto(s)
Antitoxinas/metabolismo , Entropía , Regulación Alostérica , Antitoxinas/genética , Bacteriófago P1/genética , Bacteriófago P1/metabolismo , Operón/genética
18.
RNA Biol ; 15(3): 303-307, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29099338

RESUMEN

Toxin-antitoxin systems (TA) are widespread in bacteria and archea. They are commonly found in chromosomes and mobile genetic elements. These systems move from different genomic locations and bacterial hosts through horizontal gene transfer, using mobile elements as vehicles. Their potential roles in bacterial physiology are still a matter of debate in the field. The mechanisms of action of different toxin families have been deciphered at the molecular level. Intriguingly, the vast majority of these toxins target protein synthesis. They use a variety of molecular mechanisms and inhibit nearly every step of the translation process. Recently, we have identified a novel toxin, AtaT, presenting acetyltransferase activity. 1 Our work uncovered the molecular activity of AtaT: it specifically acetylates the methionine moiety on the initiator Met-tRNAfMet. This modification drastically impairs recognition by initiation factor 2 (IF2), thereby inhibiting the initiation step of translation.


Asunto(s)
Aciltransferasas/metabolismo , Escherichia coli/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN de Transferencia de Metionina/química , Acetilación , Aciltransferasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metionina/química , Modelos Moleculares , Factor 2 Procariótico de Iniciación/metabolismo
19.
Nature ; 487(7405): 119-22, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22722836

RESUMEN

S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a φ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca(2+) ion coordination. A Ca(2+)-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Calcio/farmacología , Geobacillus stearothermophilus/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Calcio/química , Calcio/metabolismo , Microscopía por Crioelectrón , Cristalización/métodos , Cristalografía por Rayos X , Inmunoglobulinas/química , Modelos Moleculares , Simulación de Dinámica Molecular , Nanoestructuras/química , Polimerizacion/efectos de los fármacos , Estructura Cuaternaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Soluciones
20.
J Biol Chem ; 291(21): 10950-60, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27026704

RESUMEN

Escherichia coli MazF (EcMazF) is the archetype of a large family of ribonucleases involved in bacterial stress response. The crystal structure of EcMazF in complex with a 7-nucleotide substrate mimic explains the relaxed substrate specificity of the E. coli enzyme relative to its Bacillus subtilis counterpart and provides a framework for rationalizing specificity in this enzyme family. In contrast to a conserved mode of substrate recognition and a conserved active site, regulation of enzymatic activity by the antitoxin EcMazE diverges from its B. subtilis homolog. Central in this regulation is an EcMazE-induced double conformational change as follows: a rearrangement of a crucial active site loop and a relative rotation of the two monomers in the EcMazF dimer. Both are induced by the C-terminal residues Asp-78-Trp-82 of EcMazE, which are also responsible for strong negative cooperativity in EcMazE-EcMazF binding. This situation shows unexpected parallels to the regulation of the F-plasmid CcdB activity by CcdA and further supports a common ancestor despite the different activities of the MazF and CcdB toxins. In addition, we pinpoint the origin of the lack of activity of the E24A point mutant of EcMazF in its inability to support the substrate binding-competent conformation of EcMazF.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Endorribonucleasas/química , Endorribonucleasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutación Puntual , Conformación Proteica , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA