Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1333-D1346, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953324

RESUMEN

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


Asunto(s)
Ontologías Biológicas , Humanos , Fenotipo , Genómica , Algoritmos , Enfermedades Raras
2.
Am J Hum Genet ; 108(9): 1564-1577, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34289339

RESUMEN

A critical challenge in genetic diagnostics is the computational assessment of candidate splice variants, specifically the interpretation of nucleotide changes located outside of the highly conserved dinucleotide sequences at the 5' and 3' ends of introns. To address this gap, we developed the Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS) algorithm. SQUIRLS generates a small set of interpretable features for machine learning by calculating the information-content of wild-type and variant sequences of canonical and cryptic splice sites, assessing changes in candidate splicing regulatory sequences, and incorporating characteristics of the sequence such as exon length, disruptions of the AG exclusion zone, and conservation. We curated a comprehensive collection of disease-associated splice-altering variants at positions outside of the highly conserved AG/GT dinucleotides at the termini of introns. SQUIRLS trains two random-forest classifiers for the donor and for the acceptor and combines their outputs by logistic regression to yield a final score. We show that SQUIRLS transcends previous state-of-the-art accuracy in classifying splice variants as assessed by rank analysis in simulated exomes, and is significantly faster than competing methods. SQUIRLS provides tabular output files for incorporation into diagnostic pipelines for exome and genome analysis, as well as visualizations that contextualize predicted effects of variants on splicing to make it easier to interpret splice variants in diagnostic settings.


Asunto(s)
Algoritmos , Curaduría de Datos/métodos , Enfermedades Genéticas Congénitas/genética , Sitios de Empalme de ARN , Empalme del ARN , Programas Informáticos , Secuencia de Bases , Biología Computacional/métodos , Exoma , Exones , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Intrones , Mutación , Secuenciación del Exoma
3.
Am J Hum Genet ; 107(3): 403-417, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32755546

RESUMEN

Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%-50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Genómica , Enfermedades Raras/diagnóstico , Algoritmos , Exoma/genética , Humanos , Fenotipo , Enfermedades Raras/genética , Programas Informáticos
5.
Bioinformatics ; 32(23): 3679-3681, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27503226

RESUMEN

The Gene Expression Omnibus (GEO) is a public repository of gene expression data. Although GEO has its own tool, GEO2R, for data analysis, evaluation of single genes is not straightforward and survival analysis in specific GEO datasets is not possible without bioinformatics expertise. We describe a web application, shinyGEO, that allows a user to download gene expression data sets directly from GEO in order to perform differential expression and survival analysis for a gene of interest. In addition, shinyGEO supports customized graphics, sample selection, data export and R code generation so that all analyses are reproducible. The availability of shinyGEO makes GEO datasets more accessible to non-bioinformaticians, promising to lead to better understanding of biological processes and genetic diseases such as cancer. AVAILABILITY AND IMPLEMENTATION: Web application and source code are available from http://gdancik.github.io/shinyGEO/ CONTACT: dancikg@easternct.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Expresión Génica , Internet , Gráficos por Computador , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
medRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39228707

RESUMEN

Structured representations of clinical data can support computational analysis of individuals and cohorts, and ontologies representing disease entities and phenotypic abnormalities are now commonly used for translational research. The Medical Action Ontology (MAxO) provides a computational representation of treatments and other actions taken for the clinical management of patients. Currently, manual biocuration is used to assign MAxO terms to rare diseases, enabling clinical management of rare diseases to be described computationally for use in clinical decision support and mechanism discovery. However, it is challenging to scale manual curation to comprehensively capture information about medical actions for the more than 10,000 rare diseases. We present AutoMAxO, a semi-automated workflow that leverages Large Language Models (LLMs) to streamline MAxO biocuration for rare diseases. AutoMAxO first uses LLMs to retrieve candidate curations from abstracts of relevant publications. Next, the candidate curations are matched to ontology terms from MAxO, Human Phenotype Ontology (HPO), and MONDO disease ontology via a combination of LLMs and post-processing techniques. Finally, the matched terms are presented in a structured form to a human curator for approval. We used this approach to process 4,918 unique medical abstracts and identified annotations for 21 rare genetic diseases, we extracted 18,631 candidate disease-treatment curations, 538 of which were confirmed and transferred to the MAxO annotation dataset. The results of this project underscore the potential of generative AI to accelerate precision medicine by enabling a robust and comprehensive curation of the primary literature to represent information about diseases and procedures in a structured fashion. Although we focused on MAxO in this project, similar approaches could be taken for other biomedical curation tasks.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37684057

RESUMEN

We identified a de novo heterozygous transient receptor potential cation channel subfamily M (melastatin) member 3 (TRPM3) missense variant, p.(Asn1126Asp), in a patient with developmental delay and manifestations of cerebral palsy (CP) using phenotype-driven prioritization analysis of whole-genome sequencing data with Exomiser. The variant is localized in the functionally important ion transport domain of the TRPM3 protein and predicted to impact the protein structure. Our report adds TRPM3 to the list of Mendelian disease-associated genes that can be associated with CP and provides further evidence for the pathogenicity of the variant p.(Asn1126Asp).


Asunto(s)
Parálisis Cerebral , Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Canales Catiónicos TRPM , Humanos , Parálisis Cerebral/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Fenotipo , Canales Catiónicos TRPM/genética
8.
medRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37503136

RESUMEN

Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).

9.
Med ; 4(12): 913-927.e3, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37963467

RESUMEN

BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.


Asunto(s)
Ontologías Biológicas , Humanos , Enfermedades Raras , Programas Informáticos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA