RESUMEN
Pancreatic cancer (PC) is highly lethal, with KRAS mutations in up to 95% of cases. miRNAs inversely correlate with KRAS expression, indicating potential as biomarkers. This study identified miRNAs targeting KRAS and their impact on PC characteristics using in silico methods. dbDEMC identified dysregulated miRNAs in PC; TargetScan, miRDB, and PolymiRTS 3.0 identified miRNAs specific for the KRAS gene; and OncomiR evaluated the association of miRNAs with clinical characteristics and survival in PC. The correlation between miRNAs and KRAS was analysed using ENCORI/starBase. A total of 210 deregulated miRNAs were identified in PC (116 overexpressed and 94 underexpressed). In total, 16 of them were involved in the regulation of KRAS expression and 9 of these (hsa-miR-222-3p, hsa-miR-30a-5p, hsa-miR-30b-5p, hsa-miR-30e-5p, hsa-miR-377-3p, hsa-miR-495-3p, hsa-miR-654-3p, hsa-miR-877-5p and hsa-miR-885-5p) were associated with the clinical characteristics of the PC. Specifically, the overexpression of hsa-miR-30a-5p was associated with PC mortality, and hsa-miR-30b-5p, hsa-miR-377-3p, hsa-miR-495-3p, and hsa-miR-885-5p were associated with survival. Correlation analysis revealed that the expression of 10 miRNAs is correlated with KRAS expression. The dysregulated miRNAs identified in PC may regulate KRAS and some are associated with clinically relevant features, highlighting their potential as biomarkers and therapeutic targets in PC treatment. However, experimental validation is required for confirmation.
RESUMEN
The aim of this study was to associate FGFR4 rs1966265 and rs351855 variants with colorectal cancer (CRC) in a Mexican population and to perform in silico analysis. Genomic DNA from 412 healthy individuals and 475 CRC patients was analyzed. In silico analysis was performed using the PolyPhen-V2, GEPIA, GTEx, and Cytoscape platforms. The GA genotype dominant model (GAAA) of rs1966265 and the AA genotype dominant and recessive models of rs351855 were identified as CRC risk factors (p < 0.05). CRC patients aged ≥ 50 years at diagnosis who consumed alcohol had a higher incidence of the rs351855 GA genotype than the control group (p < 0.05). Associations were observed between the rs1966265 GA genotype and patients with rectal cancer and stage III-IV disease. The rs351855 AA genotype was a risk factor for partial chemotherapy response, and the GA + AA genotype for age ≥ 50 years at diagnosis and rectal cancer was associated with a partial response to chemotherapy (p < 0.05). The AA haplotype was associated with increased susceptibility to CRC. In silico analysis indicated that the rs351855 variant is likely pathogenic (score = 0.998). Genotypic expression analysis in blood samples showed statistically significant differences (p < 0.05). EFNA4, SLC3A2, and HNF1A share signaling pathways with FGFR4. Therefore, rs1966265 and rs351855 may be potential CRC risk factors.
RESUMEN
PURPOSE: Association between variants rs1047972 and rs8173 of the AURKA gene in healthy women and breast cancer (BC) in a Mexican population. METHODS: Genomic DNA samples from 409 healthy women and 572 patients with BC were analyzed for variants rs1047972 and rs8173 of the AURKA gene by polymerase chain reaction-restriction fragment length polymorphism. RESULTS: TT genotype (odds ratio [OR], 2.5; 95% confidence interval [CI], 1.22-5.11; p = 0.0015) and the T allele (OR, 1.16; 95% CI, 1.23-2.12; p = 0.0007) of the rs1047972 variant were associated as risk susceptibility for BC relative to the control group. Contrarily, the GG genotype (OR, 0.64; 95% CI, 0.43-0.94; p = 0.029) was associated as a protective factor of susceptibility of BC of the variant rs8173 of the AURKA gene. Differences were observed in the patients with BC who were carriers of the CT genotype of the rs1047972 variant with overweight, obesity, estrogen receptor-positive plus obesity, Ki-67 (≥ 20%) plus history familial positive of cancer; and for variant rs8173 the BC patients who were CG carriers and presented chemotherapy gastric toxicity, hormonal receptor positive plus chemotherapy gastric toxicity, and menopause status plus chemotherapy gastric toxicity (p < 0.05). Two common haplotypes were identified in the study groups: CG and TC genotypes, were associated as a protective and risk factor, respectively (p < 0.05). CONCLUSION: Variants rs1047972 and rs8173 of the AURKA gene and the TC haplotype were associated as risk susceptibility factors for BC in this population.
RESUMEN
Colorectal cancer (CRC) is a major global health challenge and one of the top 10 cancers in Mexico. Lifestyle and genetic factors influence CRC development, prognosis, and therapeutic response; identifying risk factors, such as the genes involved, is critical to understanding its behavior, mechanisms, and prognosis. The association between KRAS gene variants (rs8720 and rs12587) and CRC in the Mexican population was analyzed. We performed in silico analysis and analyzed 310 healthy individuals and 385 CRC patients using TaqMan assays and real-time PCR. The CC and GG genotypes of rs8720 and rs12587 were identified as CRC risk factors (p < 0.05). The CC and TC genotypes of the rs8720 were associated with rectal cancer, age over 50 years, moderately differentiated histology, and advanced cancer stage. TG and GG genotypes of the rs12587 variant were a risk factor in the CRC group, in patients with stage I-II, males, and stage III-IV non-chemotherapy response. The TG haplotype is protected against CRC. The combined CCGG genotype was linked to CRC risk. In silico analysis revealed that the rs12587 and rs8720 variants could influence KRAS gene regulation via miRNAs. In conclusion, rs8720 and rs12587 variants of the KRAS gene were associated with CRC risk and could influence KRAS regulation via miRNAs.