Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Sport Nutr Exerc Metab ; 33(1): 30-38, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270627

RESUMEN

Dual-energy X-ray absorptiometry (DXA) is a popular technique used to quantify physique in athletic populations. Due to biological variation, DXA precision error (PE) may be higher than desired. Adherence to standardized presentation for testing has shown improvement in consecutive-day PE. However, the impact of short-term diet and physical activity standardization prior to testing has not been explored. This warrants investigation, given the process may reduce variance in total body water and muscle solute, both of which can have high daily flux amongst athletes. Twenty (n = 10 males, n = 10 females) recreationally active individuals (age: 30.7 ± 7.5 years; stature: 176.4 ± 9.1 cm; mass: 74.6 ± 14.3 kg) underwent three DXA scans; two consecutive scans on 1 day, and a third either the day before or after. In addition to adhering to standardized presentation for testing, subjects recorded all food/fluid intake plus activity undertaken in the 24 hr prior to the first DXA scan and replicated this the following 24 hr. International Society of Clinical Densitometry recommended techniques were used to calculate same- and consecutive-day PE. There was no significant difference in PE of whole-body fat mass (479 g vs. 626 g) and lean mass (634 g vs. 734 g) between same- and consecutive-day assessments. Same- and consecutive-day PE of whole-body fat mass and lean mass were less than the smallest effect size of interest. Inclusion of 24-hr standardization of diet and physical activity has the potential to reduce biological error further, but this needs to be verified with follow-up investigation.


Asunto(s)
Composición Corporal , Deportes , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Absorciometría de Fotón , Dieta , Deportes/fisiología , Ejercicio Físico , Reproducibilidad de los Resultados
2.
Int J Sport Nutr Exerc Metab ; 33(4): 222-229, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142404

RESUMEN

BACKGROUND: Bioelectrical impedance analysis (BIA) is a popular technique which can be used to track longitudinal changes in body composition. However, precision of the technique has been questioned, especially among athletic populations where small but meaningful changes are often observed. Guidelines exist which attempt to optimize precision of the technique but fail to account for potentially important variables. Standardization of dietary intake and physical activity in the 24 hr prior to assessment has been proposed as an approach to minimizing the error of impedance-derived estimates of body composition. METHODS: Eighteen recreational athletes, male (n = 10) and female (n = 8), underwent two consecutive BIA tests to quantify within-day error, and a third test (the day before or after) to quantify between-day error. All food and fluid intake plus physical activity from the 24 hr prior to the first BIA scan was replicated during the following 24 hr. Precision error was calculated as the root mean square standard deviation, percentage coefficient of variation, and least significant change. RESULTS: There were no significant differences in precision error of within- and between-day fat-free mass, fat mass, and total body water. Differences in precision error of fat-free mass and total body water, but not fat mass, were less than the smallest effect size of interest. CONCLUSION: The 24-hr standardization of dietary intake and physical activity may be an effective approach to minimizing precision error associated with BIA. However, further research to confirm the validity of this protocol compared to nonstandardized or randomized intake is warranted.


Asunto(s)
Composición Corporal , Deportes , Humanos , Masculino , Femenino , Absorciometría de Fotón , Reproducibilidad de los Resultados , Atletas , Impedancia Eléctrica
3.
Int J Sport Nutr Exerc Metab ; 31(6): 497-506, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34489365

RESUMEN

The syndrome of Relative Energy Deficiency in Sport (RED-S) includes wide-ranging effects on physiological and psychological functioning, performance, and general health. However, RED-S is understudied among male athletes at the highest performance levels. This cross-sectional study aimed to investigate surrogate RED-S markers prevalence in Norwegian male Olympic-level athletes. Athletes (n = 44) aged 24.7 ± 3.8 years, body mass 81.3 ± 15.9 kg, body fat 13.7% ± 5.8%, and training volume 76.1 ± 22.9 hr/month were included. Assessed parameters included resting metabolic rate (RMR), body composition, and bone mineral density by dual-energy X-ray absorptiometry and venous blood variables (testosterone, free triiodothyronine, cortisol, and lipids). Seven athletes (16%) grouped by the presence of low RMR (RMRratio < 0.90) (0.81 ± 0.07 vs. 1.04 ± 0.09, p < .001, effect size 2.6), also showed lower testosterone (12.9 ± 5.3 vs. 19.0 ± 5.3 nmol/L, p = .020) than in normal RMR group. In low RMRratio individuals, prevalence of other RED-S markers (-subclinical-low testosterone, low free triiodothyronine, high cortisol, and elevated low-density lipoprotein) was (N/number of markers): 2/0, 2/1, 2/2, 1/3. Low bone mineral density (z-score < -1) was found in 16% of the athletes, all with normal RMR. Subclinical low testosterone and free triiodothyronine levels were found in nine (25%) and two (5%) athletes, respectively. Subclinical high cortisol was found in 23% of athletes while 34% had elevated low-density lipoprotein cholesterol levels. Seven of 12 athletes with two or more RED-S markers had normal RMR. In conclusion, this study found that multiple RED-S markers also exist in male Olympic-level athletes. This highlights the importance of regular screening of male elite athletes, to ensure early detection and treatment of RED-S.


Asunto(s)
Deficiencia Relativa de Energía en el Deporte , Adulto , Atletas , Biomarcadores , Composición Corporal , Estudios Transversales , Humanos , Masculino , Prevalencia , Adulto Joven
4.
Scand J Med Sci Sports ; 30(5): 865-877, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32034812

RESUMEN

In this study, we compare the effects of isocaloric high- (HIGH: 2 g kg-1  d-1 , n = 19) and low-protein diet (LOW: 1 g kg-1  d-1 , n = 19) on changes in body composition, muscle strength, and endocrine variables in response to a 10-day military field exercise with energy deficit, followed by 7 days of recovery. Body composition (DXA), one repetition maximum (1RM) bench and leg press, counter-movement jump height (CMJ) and blood variables were assessed before and after the exercise. Performance and blood variables were reassessed after 7 days of recovery. The 10-day exercise resulted in severe energy deficit in both LOW and HIGH (-4373 ± 1250, -4271 ± 1075 kcal d-1 ) and led to decreased body mass (-6.1%, -5.2%), fat mass (-40.5%, -33.4%), 1RM bench press (-9.5%, -9.7%), 1RM leg press (-7.8%, -8.3%), and CMJ (-14.7%, -14.6%), with no differences between groups. No change was seen for fat-free mass. In both groups, the exercise led to a switch toward a catabolic physiological milieu, evident as reduced levels of anabolic hormones (testosterone, IGF-1) and increased levels of cortisol (more pronounced in HIGH, P < .05). Both groups also displayed substantial increases in creatine kinase. After 7 days of recovery, most variables had returned to close-to pre-exercise levels, except for CMJ, which remained at reduced levels. In conclusion, increased protein intake during 10-day military field exercise with severe energy deficiency did not mitigate loss of body mass or impairment of physical performance.


Asunto(s)
Composición Corporal , Dieta Rica en Proteínas , Metabolismo Energético , Personal Militar , Fuerza Muscular , Rendimiento Físico Funcional , Biomarcadores/sangre , Dieta Baja en Carbohidratos , Femenino , Humanos , Masculino , Adulto Joven
5.
Int J Sport Nutr Exerc Metab ; 29(2): 165-174, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30507259

RESUMEN

Track and field athletes engage in vigorous training that places stress on physiological systems requiring nutritional support for optimal recovery. Of paramount importance when optimizing recovery nutrition are rehydration and refueling which are covered in other papers in this volume. Here, we highlight the benefits for dietary protein intake over and above requirements set out in various countries at ∼0.8-1.0 g·kg body mass (BM)-1·day-1 for training adaptation, manipulating body composition, and optimizing performance in track and field athletes. To facilitate the remodeling of protein-containing structures, which are turning over rapidly due to their training volumes, track and field athletes with the goal of weight maintenance or weight gain should aim for protein intakes of ∼1.6 g·kg BM-1·day-1. Protein intakes at this level would not necessarily require an overemphasis on protein-containing foods and, beyond convenience, does not suggest a need to use protein or amino acid-based supplements. This review also highlights that optimal protein intakes may exceed 1.6 g·kg BM-1·day-1 for athletes who are restricting energy intake and attempting to minimize loss of lean BM. We discuss the underpinning rationale for weight loss in track and field athletes, explaining changes in metabolic pathways that occur in response to energy restriction when manipulating protein intake and training. Finally, this review offers practical advice on protein intakes that warrant consideration in allowing an optimal adaptive response for track and field athletes seeking to train effectively and to lose fat mass while energy restricted with minimal (or no) loss of lean BM.


Asunto(s)
Adaptación Fisiológica , Composición Corporal , Proteínas en la Dieta/administración & dosificación , Necesidades Nutricionales , Fenómenos Fisiológicos en la Nutrición Deportiva , Atletismo/fisiología , Atletas , Rendimiento Atlético/fisiología , Peso Corporal , Suplementos Dietéticos , Humanos , Pérdida de Peso
6.
Br J Sports Med ; 52(7): 439-455, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29540367

RESUMEN

Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition programme. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including (1) the management of micronutrient deficiencies, (2) supply of convenient forms of energy and macronutrients, and (3) provision of direct benefits to performance or (4) indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can benefit the athlete, but others may harm the athlete's health, performance, and/or livelihood and reputation (if an antidoping rule violation results). A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome and habitual diet. Supplements intended to enhance performance should be thoroughly trialled in training or simulated competition before being used in competition. Inadvertent ingestion of substances prohibited under the antidoping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount; expert professional opinion and assistance is strongly advised before an athlete embarks on supplement use.


Asunto(s)
Atletas , Rendimiento Atlético , Suplementos Dietéticos , Fenómenos Fisiológicos en la Nutrición Deportiva , Consenso , Dieta , Humanos
7.
Int J Sport Nutr Exerc Metab ; 28(2): 126-138, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29580114

RESUMEN

In elite sport, where opponents are evenly matched, small factors can determine the outcome of sporting contests. Not all athletes know the value of making wise nutrition choices, but anything that might give a competitive edge, including dietary supplements, can seem attractive. Between 40% and 100% of athletes typically use supplements, depending on the type of sport, level of competition, and the definition of supplements. However, unless the athlete has a nutrient deficiency, supplementation may not improve performance and may have a detrimental effect on both performance and health. Dietary supplements are classified as a subcategory of food, so manufacturers are not required to provide evidence of product safety and efficacy, nor obtain approval from regulatory bodies before marketing supplements. This creates the potential for health risks, and serious adverse effects have been reported from the use of some dietary supplements. Athletes who compete in sports under an anti-doping code must also realize that supplement use exposes them to a risk of ingesting banned substances or precursors of prohibited substances. Government systems of regulations do not include specific laboratory testing for banned substances according to the WADA list, so a separate regulatory framework to evaluate supplements for their risk of provoking a failed doping test is needed. In the high-performance culture typical of elite sport, athletes may use supplements regardless of possible risks. A discussion around medical, physiological, cultural, and ethical questions may be warranted to ensure that the athlete has the information needed to make an informed choice.


Asunto(s)
Atletas , Suplementos Dietéticos , Necesidades Nutricionales , Fenómenos Fisiológicos en la Nutrición Deportiva , Doping en los Deportes , Humanos , Sustancias para Mejorar el Rendimiento
8.
Int J Sport Nutr Exerc Metab ; 28(2): 104-125, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29589768

RESUMEN

Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete's health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.


Asunto(s)
Atletas , Rendimiento Atlético/fisiología , Suplementos Dietéticos , Fenómenos Fisiológicos en la Nutrición Deportiva , Consenso , Doping en los Deportes , Guías como Asunto , Humanos , Necesidades Nutricionales , Sustancias para Mejorar el Rendimiento
10.
J Physiol ; 592(8): 1887-901, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24492839

RESUMEN

In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1α: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.


Asunto(s)
Ácido Ascórbico/farmacología , Ejercicio Físico , Consumo de Oxígeno/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Vitamina E/farmacología , Vitaminas/farmacología , Adaptación Fisiológica , Adulto , Ácido Ascórbico/administración & dosificación , Suplementos Dietéticos , Método Doble Ciego , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitamina E/administración & dosificación , Vitaminas/administración & dosificación , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
11.
Nutrients ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904082

RESUMEN

Female endurance athletes are considered a high-risk group for developing Relative Energy Deficiency in Sport (REDs). Due to the lack of educational and behavioral intervention studies, targeting and evaluating the effects of the practical daily management of REDs, we developed the Food and nUtrition for Endurance athletes-a Learning (FUEL) program, consisting of 16 weekly online lectures and individual athlete-centered nutrition counseling every other week. We recruited female endurance athletes from Norway (n = 60), Sweden (n = 84), Ireland (n = 17), and Germany (n = 47). Fifty athletes with symptoms of REDs and with low risk of eating disorders, with no use of hormonal contraceptives and no chronic diseases, were allocated to either the FUEL intervention (n = 32) (FUEL) or a 16-week control period (n = 18) (CON). All but one completed FUEL, while 15 completed CON. We found strong evidence for improvements in sports nutrition knowledge, assessed via interviews, and moderate to strong evidence in the ratings concerning self-perceived sports nutrition knowledge in FUEL versus CON. Analyses of the seven-day prospective weighed food record and questions related to sports nutrition habits, suggested weak evidence for improvements in FUEL versus CON. The FUEL intervention improved sports nutrition knowledge and suggested weak evidence for improved sports nutrition behavior in female endurance athletes with symptoms of REDs.


Asunto(s)
Deficiencia Relativa de Energía en el Deporte , Ciencias de la Nutrición y del Deporte , Deportes , Humanos , Femenino , Estudios Prospectivos , Atletas
12.
Front Sports Act Living ; 5: 1254210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164441

RESUMEN

Female endurance athletes are at high risk for developing Relative Energy Deficiency in Sport (REDs), resulting in symptoms such as menstrual dysfunction and gastrointestinal (GI) problems. The primary aim of this study was to investigate effects of the FUEL (Food and nUtrition for Endurance athletes-a Learning program) intervention consisting of weekly online lectures combined with individual athlete-centered nutrition counseling every other week for sixteen weeks on REDs related symptoms in female endurance athletes at risk of low energy availability [Low Energy Availability in Females Questionnaire (LEAF-Q) score ≥8]. Female endurance athletes from Norway (n = 60), Sweden (n = 84), Ireland (n = 17), and Germany (n = 47) were recruited. Fifty athletes with risk of REDs (LEAF-Q score ≥8) and with low risk of eating disorders [Eating Disorder Examination Questionnaire (EDE-Q) global score <2.5], with no use of hormonal contraceptives and no chronic diseases, were allocated to either the FUEL intervention (n = 32) (FUEL) or a sixteen-week control period (n = 18) (CON). All but one completed FUEL and n = 15 completed CON. While no evidence for difference in change in LEAF-Q total or subscale scores between groups was detected post-intervention (BFincl < 1), the 6- and 12-months follow-up revealed strong evidence for improved LEAF-Q total (BFincl = 123) and menstrual score (BFincl = 840) and weak evidence for improved GI-score (BFincl = 2.3) among FUEL athletes. In addition, differences in change between groups was found for EDE-Q global score post-intervention (BFincl = 1.9). The reduction in EDE-Q score remained at 6- and 12- months follow-up among FUEL athletes. Therefore, the FUEL intervention may improve REDs related symptoms in female endurance athletes. Clinical Trial Registration: www.clinicaltrials.gov (NCT04959565).

13.
Nutrients ; 14(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35565840

RESUMEN

A questionnaire-based screening tool for male athletes at risk of low energy availability (LEA) could facilitate both research and clinical practice. The present options rely on proxies for LEA such screening tools for disordered eating, exercise dependence, or those validated in female athlete populations. in which the female-specific sections are excluded. To overcome these limitations and support progress in understanding LEA in males, centres in Australia, Norway, Denmark, and Sweden collaborated to develop a screening tool (LEAM-Q) based on clinical investigations of elite and sub-elite male athletes from multiple countries and ethnicities, and a variety of endurance and weight-sensitive sports. A bank of questions was developed from previously validated questionnaires and expert opinion on various clinical markers of LEA in athletic or eating disorder populations, dizziness, thermoregulation, gastrointestinal symptoms, injury, illness, wellbeing, recovery, sleep and sex drive. The validation process covered reliability, content validity, a multivariate analysis of associations between variable responses and clinical markers, and Receiver Operating Characteristics (ROC) curve analysis of variables, with the inclusion threshold being set at 60% sensitivity. Comparison of the scores of the retained questionnaire variables between subjects classified as cases or controls based on clinical markers of LEA revealed an internal consistency and reliability of 0.71. Scores for sleep and thermoregulation were not associated with any clinical marker and were excluded from any further analysis. Of the remaining variables, dizziness, illness, fatigue, and sex drive had sufficient sensitivity to be retained in the questionnaire, but only low sex drive was able to distinguish between LEA cases and controls and was associated with perturbations in key clinical markers and questionnaire responses. In summary, in this large and international cohort, low sex drive was the most effective self-reported symptom in identifying male athletes requiring further clinical assessment for LEA.


Asunto(s)
Atletas , Mareo , Biomarcadores , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Fenómenos Fisiológicos en la Nutrición Deportiva , Encuestas y Cuestionarios
14.
Front Sports Act Living ; 4: 869594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592590

RESUMEN

Relative energy deficiency in sport (RED-S) is a complex syndrome describing health and performance consequences of low energy availability (LEA) and is common among female endurance athletes. Various underlying causes of LEA have been reported, including disordered eating behavior (DE), but studies investigating the association with exercise addiction and food intolerances are lacking. Therefore, the aim of this cross-sectional study was to investigate the association between DE, exercise addiction and food intolerances in athletes at risk of LEA compared to those with low risk. Female endurance athletes, 18-35 years, training ≥5 times/week were recruited in Norway, Sweden, Ireland, and Germany. Participants completed an online-survey comprising the LEA in Females Questionnaire (LEAF-Q), Exercise Addiction Inventory (EAI), Eating Disorder Examination Questionnaire (EDE-Q), and questions regarding food intolerances. Of the 202 participants who met the inclusion criteria and completed the online survey, 65% were at risk of LEA, 23% were at risk of exercise addiction, and 21% had DE. Athletes at risk of LEA had higher EDE-Q and EAI scores compared to athletes with low risk. EAI score remained higher in athletes with risk of LEA after excluding athletes with DE. Athletes at risk of LEA did not report more food intolerances (17 vs. 10%, P = 0.198), but were more frequently reported by athletes with DE (28 vs. 11%, P = 0.004). In conclusion, these athletes had a high risk of LEA, exercise addiction, and DE. Exercise addiction should be considered as an additional risk factor in the prevention, early detection, and targeted treatment of RED-S among female endurance athletes.

15.
J Sports Sci ; 29 Suppl 1: S101-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21500080

RESUMEN

The use of dieting, rapid weight loss, and frequent weight fluctuation among athletes competing in weight-class and leanness sports have been considered a problem for years, but the extent of the problem and the health and performance consequences have yet to be fully examined. Most studies examining these issues have had weak methodology. However, results from this review indicate that a high proportion of athletes are using extreme weight-control methods and that the rules of some sports might be associated with the risk of continuous dieting, energy deficit, and/or use of extreme weight-loss methods that can be detrimental to health and performance. Thus, preventive strategies are justified for medical as well as performance reasons. The most urgent needs are: (1) to develop sport-specific educational programmes for athletic trainers, coaches, and athletes; (2) modifications to regulations; and (3) research related to minimum percentage body fat and judging patterns.


Asunto(s)
Tejido Adiposo , Composición Corporal , Peso Corporal , Dieta , Ingestión de Energía , Estado Nutricional , Deportes , Rendimiento Atlético , Dieta/normas , Dieta Reductora , Metabolismo Energético , Estética , Educación en Salud , Humanos , Delgadez , Pérdida de Peso
16.
Int J Sport Nutr Exerc Metab ; 21(5): 426-35, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21896944

RESUMEN

CONTEXT: When weight loss (WL) is needed, it is recommended that athletes do it gradually by 0.5-1 kg/wk through moderate energy restriction. However, the effect of WL rate on long-term changes in body composition (BC) and performance has not been investigated in elite athletes. PURPOSE: To compare changes in body mass (BM), fat mass (FM), lean body mass (LBM), and performance 6 and 12 mo after 2 different WL interventions promoting loss of 0.7% vs. 1.4% of body weight per wk in elite athletes. METHODS: Twenty-three athletes completed 6- and 12-mo postintervention testing (slow rate [SR] n = 14, 23.5 ± 3.3 yr, 72.2 ± 12.2 kg; fast rate [FR] n = 9, 21.4 ± 4.0 yr, 71.6 ± 12.0 kg). The athletes had individualized diet plans promoting the predetermined weekly WL during intervention, and 4 strength-training sessions per wk were included. BM, BC, and strength (1-repetition maximum) were tested at baseline, postintervention, and 6 and 12 mo after the intervention. RESULTS: BM decreased by ~6% in both groups during the intervention but was not different from baseline values after 12 mo. FM decreased in SR and FR during the intervention by 31% ± 3% vs. 23% ± 4%, respectively, but was not different from baseline after 12 mo. LBM and upper body strength increased more in SR than in FR (2.0% ± 1.3% vs. 0.8% ± 1.1% and 12% ± 2% vs. 6% ± 2%) during the intervention, but after 12 mo there were no significant differences between groups in BC or performance. CONCLUSION: There were no significant differences between groups after 12 mo, suggesting that WL rate is not the most important factor in maintaining BC and performance after WL in elite athletes.


Asunto(s)
Rendimiento Atlético/fisiología , Composición Corporal/fisiología , Dieta , Fuerza Muscular/fisiología , Entrenamiento de Fuerza , Pérdida de Peso/fisiología , Tejido Adiposo , Adolescente , Adulto , Dieta Reductora , Ingestión de Energía , Femenino , Humanos , Masculino , Tiempo , Adulto Joven
17.
Artículo en Inglés | MEDLINE | ID: mdl-33345095

RESUMEN

Background: Altitude training stresses several physiological and metabolic processes and alters the dietary needs of the athletes. International Olympic Committee (IOC)'s Nutrition Expert Group suggests that athletes should increase intake of energy, carbohydrate, iron, fluid, and antioxidant-rich foods while training at altitude. Objective: We investigated whether athletes adjust their dietary intake according to the IOC's altitude-specific dietary recommendations, and whether an in-between meal intervention with antioxidant-rich foods altered the athletes' dietary composition and nutrition-related blood parameters (mineral, vitamin, carotenoid, and hormone concentrations). Design: The dietary adjustments to altitude training (3 weeks at 2,320 m) were determined for 31 elite endurance athletes (23 ± 5 years, 23 males, 8 females) by six interviewer-administered 24-h dietary recalls on non-consecutive days; three before and during the altitude camp. The additional effect of in -between meal intervention with eucaloric antioxidant-rich or control snacks (1,000 kcal/day) was tested in a randomized controlled trial with parallel design. Results: At altitude the athletes increased their energy intake by 35% (1,430 ± 630 kcal/day, p < 0.001), the provided snacks accounting for 70% of this increase. Carbohydrate intake increased from 6.5 ± 1.8 g/kg body weight (BW) (50 E%) to 9.3 ± 2.1 g/kg BW (53 E%) (p < 0.001), with no difference between the antioxidant and control group. Dietary iron, fluid, and antioxidant-rich food intake increased by 37, 38, and 104%, respectively, in the whole cohort. The intervention group had larger increases in polyunsaturated fatty acids (PUFA), ω3 PUFA (n-3 fatty acids), ω6 PUFA (n-6 fatty acids), fiber, vitamin C, folic acid, and copper intake, while protein intake increased more among the controls, reflecting the nutritional content of the snacks. Changes in the measured blood minerals, vitamins, and hormones were not differentially affected by the intervention except for the carotenoid; zeaxanthin, which increased more in the intervention group (p < 0.001). Conclusions: Experienced elite endurance athletes increased their daily energy, carbohydrate, iron, fluid, and antioxidant-rich food intake during a 3-week training camp at moderate altitude meeting most of the altitude-specific dietary recommendations. The intervention with antioxidant-rich snacks improved the composition of the athletes' diets but had minimal impact on the measured nutrition-related blood parameters. Clinical Trial Registry Number: NCT03088891 (www.clinicaltrials.gov), Norwegian registry number: 626539 (https://rekportalen.no/).

18.
Nutrients ; 11(9)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487819

RESUMEN

BACKGROUND: Large amounts of protein (40 g) or supplementing suboptimal servings of protein with leucine are able to overcome the anabolic resistance in elderly muscle. Our aim was to compare the effects of supplementation of native whey, high in leucine, with milk on gains in muscle mass and strength during a period of strength training, in elderly individuals. METHODS: In this double-blinded, randomized, controlled study, a total of 30 healthy men and women received two daily servings of 20 g of either milk protein or native whey, during an 11-week strength training intervention. Muscle strength, lean mass, m. vastus lateralis thickness, muscle fiber area, and resting and post-exercise phosphorylation of p70S6K, 4E-BP1, and eEF-2 were assessed prior to and after the intervention period. RESULTS: Muscle mass and strength increased, by all measures applied in both groups (p < 0.001), with no differences between groups (p > 0.25). p70S6K phosphorylation increased (~1000%, p < 0.045) 2 h after exercise in the untrained and trained state, with no differences between supplements. Total and phosphorylated mTORC-1 decreased after training. CONCLUSION: Supplementation with milk or native whey during an 11-week strength training period increased muscle mass and strength similarly in healthy elderly individuals.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Leucina/química , Leche/química , Entrenamiento de Fuerza , Proteína de Suero de Leche/administración & dosificación , Anciano , Envejecimiento , Animales , Biopsia , Dieta , Método Doble Ciego , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proteína de Suero de Leche/química
19.
PLoS One ; 14(6): e0217895, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31194785

RESUMEN

BACKGROUND: Various altitude training regimes, systematically used to improve oxygen carrying capacity and sports performance, have been associated with increased oxidative stress and inflammation. We investigated whether increased intake of common antioxidant-rich foods attenuates these processes. METHODS: In a randomized controlled trial, 31 elite endurance athletes (23 ± 5 years), ingested antioxidant-rich foods (n = 16), (> doubling their usual intake), or eucaloric control foods (n = 15) during a 3-week altitude training camp (2320 m). Fasting blood and urine samples were collected 7 days pre-altitude, after 5 and 18 days at altitude, and 7 days post-altitude. Change over time was compared between the groups using mixed models for antioxidant capacity [uric acid-free (ferric reducing ability of plasma (FRAP)], oxidative stress (8-epi-PGF2α) and inflammatory biomarkers (IFNγ, IL1α, IL1RA, IL1ß, IL2, IL5, IL6, IL7, IL10, IL12p70, IL13, IL17, TNFα, MCP-1 and micro-CRP). The cytokine response to a stress-test (VO2max ramp test or 100 m swimming) was assessed at pre- and post-altitude. RESULTS: FRAP increased more in the antioxidant compared to the control group (p = 0.034). IL13 decreased in the antioxidant group, while increasing in the controls (p = 0.006). A similar trend was seen for IL6 (p = 0.062). A larger decrease in micro-CRP was detected in the antioxidant group compared to controls (ß: -0.62, p = 0.02). We found no group differences for the remaining cytokines. 8-epi-PGF2α increased significantly in the whole population (p = 0.033), regardless group allocation. The stress response was significantly larger post-altitude compared with pre-altitude for IL1ß, IL6, IL7, IL13, IL12p70 and TNFα, but we found no group differences. CONCLUSIONS: Increased intake of antioxidant-rich foods elevated the antioxidant capacity and attenuated some of the altitude-induced systemic inflammatory biomarkers in elite athletes. The antioxidant intervention had no impact on the altitude-induced oxidative stress or changes in acute cytokine responses to exercise stress-tests.


Asunto(s)
Altitud , Antioxidantes/administración & dosificación , Atletas , Alimentos Funcionales , Inflamación/prevención & control , Estrés Oxidativo , Resistencia Física , Adolescente , Adulto , Biomarcadores/sangre , Citocinas/sangre , Femenino , Humanos , Mediadores de Inflamación/sangre , Masculino , Noruega , Adulto Joven
20.
Med Sci Sports Exerc ; 40(2): 372-80, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18202563

RESUMEN

PURPOSE: To investigate the time course of recovery from neuromuscular fatigue and some biochemical changes between two female soccer matches separated by an active or passive recovery regime. METHODS: Countermovement jump (CMJ), sprint performance, maximal isokinetic knee flexion and extension, creatine kinase (CK), urea, uric acid, and perceived muscle soreness were measured in 17 elite female soccer players before, immediately after, 5, 21, 45, 51, and 69 h after a first match, and immediately after a second match. Eight players performed active recovery (submaximal cycling at 60% of HRpeak and low-intensity resistance training at < 50% 1RM) 22 and 46 h after the first match. RESULTS: In response to the first match, a significant decrease in sprint performance (-3.0 +/- 0.5%), CMJ (-4.4 +/- 0.8%), peak torque in knee extension (-7.1 +/- 1.9%) and flexion (-9.4 +/- 1.8%), and an increase in CK (+ 152 +/- 28%), urea (15 +/- 2), uric acid (+ 11 +/- 2%), and muscle soreness occurred. Sprint ability was first to return to baseline (5 h) followed by urea and uric acid (21 h), isokinetic knee extension (27 h) and flexion (51 h), CK, and muscle soreness (69 h), whereas CMJ was still reduced at the beginning of the second match. There were no significant differences in the recovery pattern between the active and passive recovery groups. The magnitude of the neuromuscular and biochemical changes after the second match was similar to that observed after the first match. CONCLUSION: The present study reveals differences in the recovery pattern of the various neuromuscular and biochemical parameters in response to a female soccer match. The active recovery had no effects on the recovery pattern of the four neuromuscular and three biochemical parameters.


Asunto(s)
Adaptación Fisiológica/fisiología , Fatiga Muscular/fisiología , Fútbol/fisiología , Adolescente , Adulto , Creatina Quinasa/análisis , Prueba de Esfuerzo , Femenino , Humanos , Noruega , Dimensión del Dolor , Esfuerzo Físico/fisiología , Suecia , Urea/análisis , Ácido Úrico/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA