Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(27): 15967-15976, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571909

RESUMEN

The insular cortex (INS) is extensively connected to the central nucleus of the amygdala (CEA), and both regions send convergent projections into the caudal lateral hypothalamus (LHA) encompassing the parasubthalamic nucleus (PSTN). However, the organization of the network between these structures has not been clearly delineated in the literature, although there has been an upsurge in functional studies related to these structures, especially with regard to the cognitive and psychopathological control of feeding. We conducted tract-tracing experiments from the INS and observed a pathway to the PSTN region that runs parallel to the canonical hyperdirect pathway from the isocortex to the subthalamic nucleus (STN) adjacent to the PSTN. In addition, an indirect pathway with a relay in the central amygdala was also observed that is similar in its structure to the classic indirect pathway of the basal ganglia that also targets the STN. C-Fos experiments showed that the PSTN complex reacts to neophobia and sickness induced by lipopolysaccharide or cisplatin. Chemogenetic (designer receptors exclusively activated by designer drugs [DREADD]) inhibition of tachykininergic neurons (Tac1) in the PSTN revealed that this nucleus gates a stop "no-eat" signal to refrain from feeding when the animal is subjected to sickness or exposed to a previously unknown source of food. Therefore, our anatomical findings in rats and mice indicate that the INS-PSTN network is organized in a similar manner as the hyperdirect and indirect basal ganglia circuitry. Functionally, the PSTN is involved in gating feeding behavior, which is conceptually homologous to the motor no-go response of the adjacent STN.


Asunto(s)
Ganglios Basales/fisiología , Corteza Cerebral/patología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Corteza Olfatoria/fisiología , Animales , Conducta Animal , Núcleo Amigdalino Central , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Núcleo Subtalámico
2.
J Neurosci ; 32(35): 11970-9, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22933782

RESUMEN

Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opiomelanocortin (POMC) neurons. We identified the polysialic acid molecule (PSA) as a mediator of the diet-induced rewiring of arcuate POMC. Moreover, local pharmacological inhibition and genetic disruption of the PSA signaling limits the behavioral and metabolic adaptation to HFD, as treated mice failed to normalize energy intake and showed increased body weight gain after the HFD challenge. Altogether, these findings reveal the existence of physiological hypothalamic rewiring involved in the homeostatic response to dietary fat. Furthermore, defects in the hypothalamic plasticity-driven adaptive response to HFD are obesogenic and could be involved in the development of metabolic diseases.


Asunto(s)
Adaptación Fisiológica/fisiología , Núcleo Arqueado del Hipotálamo/fisiología , Grasas de la Dieta/administración & dosificación , Proopiomelanocortina/fisiología , Ácidos Siálicos/fisiología , Animales , Ingestión de Energía/genética , Metabolismo Energético/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Red Nerviosa/fisiología , Plasticidad Neuronal/genética , Técnicas de Cultivo de Órganos , Proopiomelanocortina/metabolismo , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Transducción de Señal/genética , Aumento de Peso/genética
3.
J Comp Neurol ; 528(11): 1805-1819, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31872441

RESUMEN

A wide range of evidence indicates that olfactory perception is strongly involved in food intake. However, the polysynaptic circuitry linking the brain areas involved in feeding behavior to the olfactory regions is not well known. The aim of this article was to examine such circuits. Thus, we described, using hodological tools such as transsynaptic viruses (PRV152) transported in a retrograde manner, the long-distance indirect projections (two to three synapses) onto the main olfactory bulb (MOB). The ß-subunit of the cholera toxin which is a monosynaptic retrograde tracer was used as a control to be able to differentiate between direct and indirect projections. Our tracing experiments showed that the arcuate nucleus of the hypothalamus, as a major site for regulation of food intake, sends only very indirect projections onto the MOB. Indirect projections to MOB also originate from the solitary nucleus which is involved in energy homeostasis. Other indirect projections have been evidenced in areas of the reward circuit such as VTA and accumbens nucleus. In contrast, direct projections to the MOB arise from melanin-concentrating hormone and orexin neurons in the lateral hypothalamus. Functional significances of these projections are discussed in relation to the role of food odors in feeding and reward-related behavior.


Asunto(s)
Conducta Alimentaria/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Vías Olfatorias/citología , Vías Olfatorias/fisiología , Animales , Colorantes Fluorescentes , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos
4.
Stud Health Technol Inform ; 144: 208-10, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19592765

RESUMEN

The control of gaze and balance strongly depend on the processing of visual cues. The aim of this study is to assess the effects of the dynamic 2D and 3D visual inputs on the oculomotor and balance reactive control. Thirteen subjects were immersed in a virtual environment using 10 different 2D/3D visual flow conditions. Analysis of eye movement and postural adjustments shows that 2D and 3D flows induce specific measurable behavioral responses.


Asunto(s)
Movimientos Oculares , Interfaz Usuario-Computador , Señales (Psicología) , Humanos , Equilibrio Postural
5.
Front Behav Neurosci ; 13: 61, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024270

RESUMEN

Somatostatin (SOM) and somatostatin receptors (SSTR1-4) are present in all olfactory structures, including the olfactory bulb (OB), where SOM modulates physiological gamma rhythms and olfactory discrimination responses. In this work, histological, viral tracing and transgenic approaches were used to characterize SOM cellular targets in the murine OB. We demonstrate that SOM targets all levels of mitral dendritic processes in the OB with somatostatin receptor 2 (SSTR2) detected in the dendrites of previously uncharacterized mitral-like cells. We show that inhibitory interneurons of the glomerular layer (GL) express SSTR4 while SSTR3 is confined to the granule cell layer (GCL). Furthermore, SOM cells in the OB receive synaptic inputs from olfactory cortical afferents. Behavioral studies demonstrate that genetic deletion of SSTR4, SSTR2 or SOM differentially affects olfactory performance. SOM or SSTR4 deletion have no major effect on olfactory behavioral performances while SSTR2 deletion impacts olfactory detection and discrimination behaviors. Altogether, these results describe novel anatomical and behavioral contributions of SOM, SSTR2 and SSTR4 receptors in olfactory processing.

6.
Diabetes ; 66(2): 314-324, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27899482

RESUMEN

The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.


Asunto(s)
Peso Corporal/genética , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Canales Catiónicos TRPC/genética , Animales , Western Blotting , Ayuno , Prueba de Tolerancia a la Glucosa , Homeostasis , Hipotálamo/citología , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales Catiónicos TRPC/metabolismo
7.
J Comp Neurol ; 489(4): 403-24, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16025461

RESUMEN

The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all the modifications take place. Although our results confirm previous works (Reiss and Burd [1997] Semin Cell Dev Biol 8:171-179), we showed for the first time that the main olfactory bulb (MOB) is subdivided into seven zones at Stage 47 plus the accessory olfactory bulb (AOB). These seven zones receive fibers dedicated to aquatic olfaction ("aquatic fibers") and are conserved until Stage 66. At Stage 48 the first fibers dedicated to the aerial olfaction constitute a new dorsomedial zone that grows steadily, pushing the seven original zones ventrolaterally. Only the part of the OB receiving aquatic fibers is fragmented, reminiscent of the organization described in fish. This raises the question of whether such an organization in zones constitutes a plesiomorphy or is linked to aquatic olfaction. We generated a 3D atlas at several stages which are representative of the reorganization process. This will be a useful tool for future studies of development and function.


Asunto(s)
Bulbo Olfatorio/crecimiento & desarrollo , Nervio Olfatorio/crecimiento & desarrollo , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Xenopus laevis/crecimiento & desarrollo , Animales , Mapeo Encefálico , Carbocianinas , Femenino , Colorantes Fluorescentes , Conos de Crecimiento/fisiología , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Lectinas , Masculino , Metamorfosis Biológica/fisiología , Microscopía Confocal , Bulbo Olfatorio/anatomía & histología , Nervio Olfatorio/anatomía & histología , Vías Olfatorias/anatomía & histología , Neuronas Receptoras Olfatorias/anatomía & histología , Xenopus laevis/anatomía & histología
8.
Neuroreport ; 16(13): 1439-42, 2005 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16110267

RESUMEN

In the present study, we investigated glial cell organization in the olfactory system of adult and tadpole Xenopus laevis using glial fibrillary acidic protein and vimentin antibodies. Our results showed for the first time that glial fibrillary acidic protein was strongly expressed at the level of the olfactory nerve from tadpole to adult and was likely to be expressed by ensheathing glia. In the olfactory bulb, the nerve layer was stained, and no staining was observed in glomeruli. By contrast, vimentin decorated radial glia in the bulb but faintly stained the olfactory nerve. Interestingly, glial fibrillary acidic protein and vimentin presented complementary staining patterns, with glial fibrillary acidic protein being expressed in the peripheral olfactory system and vimentin being expressed in the central part of the olfactory system.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/metabolismo , Metamorfosis Biológica/fisiología , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/metabolismo , Vimentina/metabolismo , Animales , Inmunohistoquímica , Larva/fisiología , Neuroglía/metabolismo , Vías Olfatorias/citología , Xenopus laevis
9.
Mol Metab ; 3(6): 619-29, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25161885

RESUMEN

Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented activation of the St8sia4 gene transcription, reduced polysialylation, altered the acute homeostatic feeding response to HFD and increased the body weight gain. These findings indicate that impaired hypothalamic polysialylation contribute to the development of obesity, and establish a role for MOF in the brain control of energy balance.

10.
IEEE Comput Graph Appl ; 33(3): 66-76, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24807992

RESUMEN

Some materials, such as coffee, milk, or marble, have a soft translucent aspect because of subsurface scattering. Light enters them and gets scattered several times before leaving in a different place. A full representation of subsurface-scattering effects in illumination simulation is computationally expensive. The main difficulty comes from multiple scattering events. The high number of events increases the results' uncertainty, requiring more computation time. However, a strong correlation exists between the surface effects of multiple scattering and the effects after just two scattering events. This knowledge can help accelerate multiple-scattering effects. In particular, researchers have exploited this knowledge to provide a model and implementation for fast computation of double-scattering events using a precomputed density function stored compactly.

11.
Anat Rec (Hoboken) ; 296(9): 1453-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23904180

RESUMEN

The fact that olfactory systems are highly conserved in all animal species from insects to mammals allow the generalization of findings from one species to another. Most of our knowledge about the anatomy and physiology of the olfactory system comes from data obtained in a very limited number of biological models such as rodents, Zebrafish, Drosophila, and a worm, Caenorhabditis elegans. These models have proved useful to answer most questions in the field of olfaction, and thus concentrating on these few models appear to be a pragmatic strategy. However, the diversity of the organization and physiology of the olfactory system amongst phyla appear to be greater than generally assumed and the four models alone may not be sufficient to address all the questions arising from the study of olfaction. In this article, we will illustrate the idea that we should take advantage of biological diversity to address specific scientific questions and will show that the Xenopus olfactory system is a very good model to investigate: first, olfaction in aerial versus aquatic conditions and second, mechanisms underlying postnatal reorganization of the olfactory system especially those controlled by tyroxine hormone.


Asunto(s)
Vías Olfatorias/fisiología , Olfato , Xenopus/fisiología , Animales , Ambiente , Metamorfosis Biológica , Modelos Animales , Vías Olfatorias/embriología , Vías Olfatorias/metabolismo , Transducción de Señal , Olfato/genética , Especificidad de la Especie , Tiroxina/metabolismo , Xenopus/embriología , Xenopus/genética , Xenopus/metabolismo
12.
Anat Rec (Hoboken) ; 296(9): 1462-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23904212

RESUMEN

Although the development, anatomy, and physiology of the vertebrate olfactory system are fairly well understood, there is still no clear definition of the terminal nerve complex acknowledged by all. Among the most debated matters is whether or not the extrabulbar projections found in anamniotes should or should not be considered part of the terminal nerve complex. In this context, we investigated the early development of the extrabulbar pathway in Xenopus larvae from placodal differentiation to postmetamorphic stages. We showed that the extrabulbar fibers become visible around Stage 42 and are conserved throughout metamorphosis. We confirmed previous reports concerning their central projection patterns. In addition, we showed that these fibers originate from two types of cell bodies located in the olfactory epithelium at premetamorphic stages. Furthermore, in postmetamorphic animals, we showed that the extrabulbar axons originated from both aquatic and aerial cavities. Retrograde tracing experiment also revealed densifications evocating cell bodies along the extrabulbar axons, distributed at different positions along the olfactory nerve depending on the stages of development. These densifications were observed closer to the periphery early in development and always closer to the olfactory bulb up to the metamorphic climax. We discuss these results in light of the latest theories and more recent reports.


Asunto(s)
Fibras Nerviosas/fisiología , Mucosa Olfatoria/inervación , Nervio Olfatorio/fisiología , Vías Olfatorias/fisiología , Xenopus laevis/fisiología , Animales , Metamorfosis Biológica , Técnicas de Trazados de Vías Neuroanatómicas , Mucosa Olfatoria/embriología , Nervio Olfatorio/embriología , Vías Olfatorias/embriología , Organogénesis , Prosencéfalo/embriología , Prosencéfalo/fisiología , Xenopus laevis/embriología
13.
PLoS One ; 8(8): e72029, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967273

RESUMEN

The hypothalamus plays a crucial role in the control of the energy balance and also retains neurogenic potential into adulthood. Recent studies have reported the severe alteration of the cell turn-over in the hypothalamus of obese animals and it has been proposed that a neurogenic deficiency in the hypothalamus could be involved in the development of obesity. To explore this possibility, we examined hypothalamic cell renewal during the homeostatic response to dietary fat in mice, i.e., at the onset of diet-induced obesity. We found that switching to high-fat diet (HFD) accelerated cell renewal in the hypothalamus through a local, rapid and transient increase in cell proliferation, peaking three days after introducing the HFD. Blocking HFD-induced cell proliferation by central delivery of an antimitotic drug prevented the food intake normalization observed after HFD introduction and accelerated the onset of obesity. This result showed that HFD-induced dividing brain cells supported an adaptive anorectic function. In addition, we found that the percentage of newly generated neurons adopting a POMC-phenotype in the arcuate nucleus was increased by HFD. This observation suggested that the maturation of neurons in feeding circuits was nutritionally regulated to adjust future energy intake. Taken together, these results showed that adult cerebral cell renewal was remarkably responsive to nutritional conditions. This constituted a physiological trait required to prevent severe weight gain under HFD. Hence this report highlighted the amazing plasticity of feeding circuits and brought new insights into our understanding of the nutritional regulation of the energy balance.


Asunto(s)
Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/etiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Astrocitos/metabolismo , Proliferación Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hipotálamo/citología , Masculino , Ratones , Proopiomelanocortina/metabolismo , Aumento de Peso
14.
PLoS One ; 7(4): e33922, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509266

RESUMEN

Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Nariz , Receptores Odorantes/genética , Xenopus/genética , Animales , Genoma/genética , Hibridación in Situ , Larva/genética , Olfato , Xenopus/crecimiento & desarrollo
15.
Front Neuroanat ; 6: 44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23162437

RESUMEN

It is well known that olfaction influences food intake, and conversely, that an individual's nutritional status modulates olfactory sensitivity. However, what is still poorly understood is the neuronal correlate of this relationship, as well as the connections between the olfactory bulb and the hypothalamus. The goal of this report is to analyze the relationship between the olfactory bulb and hypothalamus, focusing on orexin A immunostaining, a hypothalamic neuropeptide that is thought to play a role in states of sleep/wakefulness. Interestingly, orexin A has also been described as a food intake stimulator. Such an effect may be due in part to the stimulation of the olfactory bulbar pathway. In rats, orexin positive cells are concentrated strictly in the lateral hypothalamus, while their projections invade nearly the entire brain including the olfactory system. Therefore, orexin appears to be a good candidate to play a pivotal role in connecting olfactory and hypothalamic pathways. So far, orexin has been described in rats, however, there is still a lack of information concerning its expression in the brains of adult and developing mice. In this context, we revisited the orexin A pattern in adult and developing mice using immunohistological methods and confocal microscopy. Besides minor differences, orexin A immunostaining in mice shares many features with those observed in rats. In the olfactory bulb, even though there are few orexin projections, they reach all the different layers of the olfactory bulb. In contrast to the presence of orexin projections in the main olfactory bulb, almost none have been found in the accessory olfactory bulb. The developmental expression of orexin A supports the hypothesis that orexin expression only appears post-natally.

16.
Eur J Neurosci ; 22(6): 1389-99, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16190893

RESUMEN

Olfactory binding proteins (OBP), commonly associated with aerial olfaction, are found in the olfactory mucus of mammals but have never been identified in fish. It is still not clear whether the presence of OBP in aerial olfactory systems is due to phylogenetic or to functional differences linked to the adaptation of the olfactory system to an aerial environment. To test this alternative, the olfactory system of Xenopus offers a unique opportunity because it includes two olfactory cavities, one of which is thought to be devoted to aquatic olfaction and the other to aerial olfaction. We therefore purified and cloned OBPs in two Xenopus species. Xenopus laevis OBP (XlaeOBP) and Xenopus tropicalis OBP (XtroOBP) exhibit 158 and 160 amino acids, respectively, sharing 89 residues. cRNA probes allowed us to demonstrate that XlaeOBP and XtroOBP are expressed at the level of Bowman's gland specifically in the aerial olfactory cavity, as confirmed using anti-XlaeOBP antiserum. OBP mRNA transcription occurs early during metamorphosis, as early as stage 57. This is the first study to demonstrate that OBPs are exclusively present in the aerial chamber and are only expressed as the tadpole becomes an adult in species which possess both aquatic and aerial olfactory organs.


Asunto(s)
Química Encefálica/fisiología , Receptores Odorantes/biosíntesis , Proteínas de Xenopus/biosíntesis , Xenopus/metabolismo , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Especificidad de Anticuerpos , Secuencia de Bases , Clonación Molecular , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Larva , Datos de Secuencia Molecular , Moco/química , Cavidad Nasal/química , ARN Mensajero/biosíntesis , Especificidad de la Especie , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA