Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 172(6): 1216-1227, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522743

RESUMEN

The composite members of the microbiota face a range of selective pressures and must adapt to persist in the host. We highlight recent work characterizing the evolution and transfer of genetic information across nested scales of host-associated microbiota, which enable resilience to biotic and abiotic perturbations. At the strain level, we consider the preservation and diversification of adaptive information in progeny lineages. At the community level, we consider genetic exchange between distinct microbes in the ecosystem. Finally, we frame microbiomes as open systems subject to acquisition of novel information from foreign ecosystems through invasion by outsider microbes.


Asunto(s)
Evolución Molecular , Variación Genética , Metagenoma/genética , Microbiota/genética , Animales , Ecosistema , Transferencia de Gen Horizontal , Especificidad del Huésped , Humanos
2.
Proc Natl Acad Sci U S A ; 117(14): 7941-7949, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32179676

RESUMEN

Late-onset sepsis (LOS) is a highly consequential complication of preterm birth and is defined by a positive blood culture obtained after 72 h of age. The causative bacteria can be found in patients' intestinal tracts days before dissemination, and cohort studies suggest reduced LOS risk in breastfed preterm infants through unknown mechanisms. Reduced concentrations of epidermal growth factor (EGF) of maternal origin within the intestinal tract of mice correlated to the translocation of a gut-resident human pathogen Escherichia coli, which spreads systemically and caused a rapid, fatal disease in pups. Translocation of Escherichia coli was associated with the formation of colonic goblet cell-associated antigen passages (GAPs), which translocate enteric bacteria across the intestinal epithelium. Thus, maternally derived EGF, and potentially other EGFR ligands, prevents dissemination of a gut-resident pathogen by inhibiting goblet cell-mediated bacterial translocation. Through manipulation of maternally derived EGF and alteration of the earliest gut defenses, we have developed an animal model of pathogen dissemination which recapitulates gut-origin neonatal LOS.


Asunto(s)
Traslocación Bacteriana/inmunología , Receptores ErbB/metabolismo , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Microbioma Gastrointestinal/inmunología , Leche Humana/inmunología , Sepsis Neonatal/inmunología , Animales , Animales Recién Nacidos , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Lactancia Materna , Colon/metabolismo , Colon/microbiología , Modelos Animales de Enfermedad , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Heces/química , Heces/microbiología , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Transgénicos , Leche Humana/metabolismo , Sepsis Neonatal/metabolismo , Sepsis Neonatal/microbiología , Transducción de Señal/inmunología , Factores de Tiempo
3.
Nat Chem Biol ; 13(7): 730-736, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28481346

RESUMEN

Although tetracyclines are an important class of antibiotics for use in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored, despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes that have a high potential for broad dissemination. Here, we show that tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a new tetracycline and tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics.


Asunto(s)
Antibacterianos/metabolismo , Inhibidores Enzimáticos/farmacología , Legionella longbeachae/efectos de los fármacos , Legionella longbeachae/enzimología , Resistencia a la Tetraciclina/efectos de los fármacos , Tetraciclina/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Flavina-Adenina Dinucleótido/metabolismo , Legionella longbeachae/metabolismo , Modelos Moleculares , Conformación Molecular , Relación Estructura-Actividad , Tetraciclina/química , Tetraciclina/farmacología
4.
Commun Biol ; 3(1): 241, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415166

RESUMEN

Tetracycline resistance by antibiotic inactivation was first identified in commensal organisms but has since been reported in environmental and pathogenic microbes. Here, we identify and characterize an expanded pool of tet(X)-like genes in environmental and human commensal metagenomes via inactivation by antibiotic selection of metagenomic libraries. These genes formed two distinct clades according to habitat of origin, and resistance phenotypes were similarly correlated. Each gene isolated from the human gut encodes resistance to all tetracyclines tested, including eravacycline and omadacycline. We report a biochemical and structural characterization of one enzyme, Tet(X7). Further, we identify Tet(X7) in a clinical Pseudomonas aeruginosa isolate and demonstrate its contribution to tetracycline resistance. Lastly, we show anhydrotetracycline and semi-synthetic analogues inhibit Tet(X7) to prevent enzymatic tetracycline degradation and increase tetracycline efficacy against strains expressing tet(X7). This work improves our understanding of resistance by tetracycline-inactivation and provides the foundation for an inhibition-based strategy for countering resistance.


Asunto(s)
Antibacterianos/farmacología , Pseudomonas aeruginosa/enzimología , Resistencia a la Tetraciclina/genética , Tetraciclinas/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Simbiosis
5.
Nat Microbiol ; 4(12): 2285-2297, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31501537

RESUMEN

Hospitalized preterm infants receive frequent and often prolonged exposures to antibiotics because they are vulnerable to infection. It is not known whether the short-term effects of antibiotics on the preterm infant gut microbiota and resistome persist after discharge from neonatal intensive care units. Here, we use complementary metagenomic, culture-based and machine learning techniques to study the gut microbiota and resistome of antibiotic-exposed preterm infants during and after hospitalization, and we compare these readouts to antibiotic-naive healthy infants sampled synchronously. We find a persistently enriched gastrointestinal antibiotic resistome, prolonged carriage of multidrug-resistant Enterobacteriaceae and distinct antibiotic-driven patterns of microbiota and resistome assembly in extremely preterm infants that received early-life antibiotics. The collateral damage of early-life antibiotic treatment and hospitalization in preterm infants is long lasting. We urge the development of strategies to reduce these consequences in highly vulnerable neonatal populations.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Hospitalización , Metagenoma , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Biodiversidad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Humanos , Recién Nacido , Enfermedades del Recién Nacido/tratamiento farmacológico , Enfermedades del Recién Nacido/microbiología , Recien Nacido Prematuro
6.
Cell Host Microbe ; 25(4): 499-512.e8, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30926240

RESUMEN

Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN's utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential.


Asunto(s)
Adaptación Biológica , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Fármacos Gastrointestinales/administración & dosificación , Tracto Gastrointestinal/microbiología , Probióticos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Metabolismo , Ratones , Mutación , Fenilcetonurias/terapia , Selección Genética
7.
ACS Infect Dis ; 5(4): 618-633, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30835428

RESUMEN

The synthesis and biological evaluation of semisynthetic anhydrotetracycline analogues as small molecule inhibitors of tetracycline-inactivating enzymes are reported. Inhibitor potency was found to vary as a function of enzyme (major) and substrate-inhibitor pair (minor), and anhydrotetracycline analogue stability to enzymatic and nonenzymatic degradation in solution contributes to their ability to rescue tetracycline activity in whole cell Escherichia coli expressing tetracycline destructase enzymes. Taken collectively, these results provide the framework for the rational design of next-generation inhibitor libraries en route to a viable and proactive adjuvant approach to combat the enzymatic degradation of tetracycline antibiotics.


Asunto(s)
Antibacterianos/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , Tetraciclina/metabolismo , Tetraciclinas/química , Tetraciclinas/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Inhibidores Enzimáticos/síntesis química , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Tetraciclinas/síntesis química
8.
Ann N Y Acad Sci ; 1388(1): 42-58, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27768825

RESUMEN

Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications.


Asunto(s)
Antiinfecciosos , Resistencia a Medicamentos/genética , Genómica/métodos , Microbiota/genética
9.
Nat Rev Microbiol ; 15(7): 422-434, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28392565

RESUMEN

Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Metagenoma/efectos de los fármacos , Metagenómica , Bacterias/genética , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/terapia , Transferencia de Gen Horizontal , Genes Bacterianos/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenómica/métodos , Filogenia
10.
Gut Microbes ; 7(5): 443-9, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27472377

RESUMEN

The gut microbiota plays important roles in nutrient absorption, immune system development, and pathogen colonization resistance. Perturbations early in life may be detrimental to host health in the short and the long-term. Antibiotics are among the many factors that influence the development of the microbiota. Because antibiotics are heavily administered during the first critical years of gut microbiota development, it is important to understand the effects of these interventions. Infants, particularly those born prematurely, represent an interesting population because they receive early and often extensive antibiotic therapy in the first months after birth. Gibson et al. recently demonstrated that antibiotic therapy in preterm infants can dramatically affect the gut microbiome. While meropenem, ticarcillin-clavulanate, and cefotaxime treatments were associated with decreased species richness, gentamicin and vancomycin had variable effects on species richness. Interestingly, the direction of species richness response could be predicted based on the abundance of 2 species and 2 genes in the microbiome prior to gentamicin or vancomycin treatment. Nonetheless, all antibiotic treatments enriched the presence of resistance genes and multidrug resistant organisms. Treatment with different antibiotics further resulted in unique population shifts of abundant organisms and selection for different sets of resistance genes. In this addendum, we provide an extended discussion of these recent findings, and outline important future directions for elucidating the interplay between antibiotics and preterm infant gut microbiota development.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades del Recién Nacido/tratamiento farmacológico , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/microbiología , Recien Nacido Prematuro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA