Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 81(17): 3496-3508.e5, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380015

RESUMEN

The Hsp90 chaperone promotes folding and activation of hundreds of client proteins in the cell through an ATP-dependent conformational cycle guided by distinct cochaperone regulators. The FKBP51 immunophilin binds Hsp90 with its tetratricopeptide repeat (TPR) domain and catalyzes peptidyl-prolyl isomerase (PPIase) activity during folding of kinases, nuclear receptors, and tau. Here we determined the cryoelectron microscopy (cryo-EM) structure of the human Hsp90:FKBP51:p23 complex to 3.3 Å, which, together with mutagenesis and crosslinking analyses, reveals the basis for cochaperone binding to Hsp90 during client maturation. A helix extension in the TPR functions as a key recognition element, interacting across the Hsp90 C-terminal dimer interface presented in the closed, ATP conformation. The PPIase domain is positioned along the middle domain, adjacent to Hsp90 client binding sites, whereas a single p23 makes stabilizing interactions with the N-terminal dimer. With this architecture, FKBP51 is positioned to act on specific client residues presented during Hsp90-catalyzed remodeling.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas de Unión a Tacrolimus/química , Secuencia de Aminoácidos , Sitios de Unión , Biomarcadores de Tumor/química , Biomarcadores de Tumor/metabolismo , Microscopía por Crioelectrón/métodos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformación Molecular , Unión Proteica , Proteínas de Unión a Tacrolimus/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1
2.
Mol Cell ; 63(5): 768-80, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27570072

RESUMEN

Polyphosphate (polyP), a several billion-year-old biopolymer, is produced in every cell, tissue, and organism studied. Structurally extremely simple, polyP consists of long chains of covalently linked inorganic phosphate groups. We report here the surprising discovery that polyP shows a remarkable efficacy in accelerating amyloid fibril formation. We found that polyP serves as an effective nucleation source for various different amyloid proteins, ranging from bacterial CsgA to human α-synuclein, Aß1-40/42, and Tau. polyP-associated α-synuclein fibrils show distinct differences in seeding behavior, morphology, and fibril stability compared with fibrils formed in the absence of polyP. In vivo, the amyloid-stimulating and fibril-stabilizing effects of polyP have wide-reaching consequences, increasing the rate of biofilm formation in pathogenic bacteria and mitigating amyloid toxicity in differentiated neuroblastoma cells and C. elegans strains that serve as models for human folding diseases. These results suggest that we have discovered a conserved cytoprotective modifier of amyloidogenic processes.


Asunto(s)
Péptidos beta-Amiloides/agonistas , Proteínas de Escherichia coli/agonistas , Fragmentos de Péptidos/agonistas , Polifosfatos/farmacología , alfa-Sinucleína/agonistas , Proteínas tau/agonistas , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Polifosfatos/química , Pliegue de Proteína/efectos de los fármacos , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Mol Cell ; 56(1): 116-27, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25242142

RESUMEN

Exposure of cells to reactive oxygen species (ROS) causes a rapid and significant drop in intracellular ATP levels. This energy depletion negatively affects ATP-dependent chaperone systems, making ROS-mediated protein unfolding and aggregation a potentially very challenging problem. Here we show that Get3, a protein involved in ATP-dependent targeting of tail-anchored (TA) proteins under nonstress conditions, turns into an effective ATP-independent chaperone when oxidized. Activation of Get3's chaperone function, which is a fully reversible process, involves disulfide bond formation, metal release, and its conversion into distinct, higher oligomeric structures. Mutational studies demonstrate that the chaperone activity of Get3 is functionally distinct from and likely mutually exclusive with its targeting function, and responsible for the oxidative stress-sensitive phenotype that has long been noted for yeast cells lacking functional Get3. These results provide convincing evidence that Get3 functions as a redox-regulated chaperone, effectively protecting eukaryotic cells against oxidative protein damage.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiología , Oxidación-Reducción , Desplegamiento Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712168

RESUMEN

The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.

5.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33554858

RESUMEN

Genome packaging in large double-stranded DNA viruses requires a powerful molecular motor to force the viral genome into nascent capsids, which involves essential accessory factors that are poorly understood. Here, we present structures of two such accessory factors from the oncogenic herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV; ORF68) and Epstein-Barr virus (EBV; BFLF1). These homologous proteins form highly similar homopentameric rings with a positively charged central channel that binds double-stranded DNA. Mutation of individual positively charged residues within but not outside the channel ablates DNA binding, and in the context of KSHV infection, these mutants fail to package the viral genome or produce progeny virions. Thus, we propose a model in which ORF68 facilitates the transfer of newly replicated viral genomes to the packaging motor.


Asunto(s)
Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/fisiología , Proteínas Virales/química , Proteínas Virales/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Genoma Viral , Células HEK293 , Infecciones por Herpesviridae/virología , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Humanos , Empaquetamiento del Genoma Viral , Proteínas Virales/genética , Replicación Viral
6.
Protein Sci ; 29(2): 407-419, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31599052

RESUMEN

Translocases of the AAA+ (ATPases Associated with various cellular Activities) family are powerful molecular machines that use the mechano-chemical coupling of ATP hydrolysis and conformational changes to thread DNA or protein substrates through their central channel for many important biological processes. These motors comprise hexameric rings of ATPase subunits, in which highly conserved nucleotide-binding domains form active-site pockets near the subunit interfaces and aromatic pore-loop residues extend into the central channel for substrate binding and mechanical pulling. Over the past 2 years, 41 cryo-EM structures have been solved for substrate-bound AAA+ translocases that revealed spiral-staircase arrangements of pore-loop residues surrounding substrate polypeptides and indicating a conserved hand-over-hand mechanism for translocation. The subunits' vertical positions within the spiral arrangements appear to be correlated with their nucleotide states, progressing from ATP-bound at the top to ADP or apo states at the bottom. Studies describing multiple conformations for a particular motor illustrate the potential coupling between ATP-hydrolysis steps and subunit movements to propel the substrate. Experiments with double-ring, Type II AAA+ motors revealed an offset of hydrolysis steps between the two ATPase domains of individual subunits, and the upper ATPase domains lacking aromatic pore loops frequently form planar rings. This review summarizes the critical advances provided by recent studies to our structural and functional understanding of hexameric AAA+ translocases, as well as the important outstanding questions regarding the underlying mechanisms for coordinated ATP-hydrolysis and mechano-chemical coupling.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Humanos , Hidrólisis , Modelos Moleculares , Conformación Molecular
7.
Structure ; 27(12): 1820-1829.e4, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623962

RESUMEN

Valosin-containing protein (VCP)/p97 is an essential ATP-dependent protein unfoldase. Dominant mutations in p97 cause multisystem proteinopathy (MSP), a disease affecting the brain, muscle, and bone. Despite the identification of numerous pathways that are perturbed in MSP, the molecular-level defects of these p97 mutants are not completely understood. Here, we use biochemistry and cryoelectron microscopy to explore the effects of MSP mutations on the unfoldase activity of p97 in complex with its substrate adaptor NPLOC4⋅UFD1L (UN). We show that all seven analyzed MSP mutants unfold substrates faster. Mutant homo- and heterohexamers exhibit tighter UN binding and faster substrate processing. Our structural studies suggest that the increased UN affinity originates from a decoupling of p97's nucleotide state and the positioning of its N-terminal domains. Together, our data support a gain-of-function model for p97-UN-dependent processes in MSP and underscore the importance of N-terminal domain movements for adaptor recruitment and substrate processing by p97.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Mutación , Proteínas Nucleares/química , Proteína que Contiene Valosina/química , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
8.
Nat Commun ; 10(1): 2393, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160557

RESUMEN

Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Caseínas/metabolismo , Endopeptidasa Clp/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/metabolismo , Proteínas de Choque Térmico/ultraestructura , Transporte de Proteínas , Dominio AAA , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Hidrólisis , Modelos Moleculares , Péptidos/metabolismo , Agregado de Proteínas , Subunidades de Proteína/metabolismo
9.
Cell Rep ; 28(8): 2080-2095.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433984

RESUMEN

Hsp104 is an AAA+ protein disaggregase, which can be potentiated via diverse mutations in its autoregulatory middle domain (MD) to mitigate toxic misfolding of TDP-43, FUS, and α-synuclein implicated in fatal neurodegenerative disorders. Problematically, potentiated MD variants can exhibit off-target toxicity. Here, we mine disaggregase sequence space to safely enhance Hsp104 activity via single mutations in nucleotide-binding domain 1 (NBD1) or NBD2. Like MD variants, NBD variants counter TDP-43, FUS, and α-synuclein toxicity and exhibit elevated ATPase and disaggregase activity. Unlike MD variants, non-toxic NBD1 and NBD2 variants emerge that rescue TDP-43, FUS, and α-synuclein toxicity. Potentiating substitutions alter NBD1 residues that contact ATP, ATP-binding residues, or the MD. Mutating the NBD2 protomer interface can also safely ameliorate Hsp104. Thus, we disambiguate allosteric regulation of Hsp104 by several tunable structural contacts, which can be engineered to spawn enhanced therapeutic disaggregases with minimal off-target toxicity.


Asunto(s)
Proteínas de Unión al ADN/toxicidad , Proteínas de Choque Térmico/metabolismo , Proteína FUS de Unión a ARN/toxicidad , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/toxicidad , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Ácido Azetidinocarboxílico/farmacología , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas Mutantes/metabolismo , Mutación Missense/genética , Agregado de Proteínas , Dominios Proteicos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
10.
Science ; 362(6418)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30309908

RESUMEN

The 26S proteasome is the primary eukaryotic degradation machine and thus is critically involved in numerous cellular processes. The heterohexameric adenosine triphosphatase (ATPase) motor of the proteasome unfolds and translocates targeted protein substrates into the open gate of a proteolytic core while a proteasomal deubiquitinase concomitantly removes substrate-attached ubiquitin chains. However, the mechanisms by which ATP hydrolysis drives the conformational changes responsible for these processes have remained elusive. Here we present the cryo-electron microscopy structures of four distinct conformational states of the actively ATP-hydrolyzing, substrate-engaged 26S proteasome. These structures reveal how mechanical substrate translocation accelerates deubiquitination and how ATP-binding, -hydrolysis, and phosphate-release events are coordinated within the AAA+ (ATPases associated with diverse cellular activities) motor to induce conformational changes and propel the substrate through the central pore.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Transporte Biológico , Microscopía por Crioelectrón , Hidrólisis , Conformación Proteica , Proteolisis , Ubiquitina
11.
Science ; 357(6348): 273-279, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28619716

RESUMEN

Hsp100 polypeptide translocases are conserved members of the AAA+ family (adenosine triphosphatases associated with diverse cellular activities) that maintain proteostasis by unfolding aberrant and toxic proteins for refolding or proteolytic degradation. The Hsp104 disaggregase from Saccharomyces cerevisiae solubilizes stress-induced amorphous aggregates and amyloids. The structural basis for substrate recognition and translocation is unknown. Using a model substrate (casein), we report cryo-electron microscopy structures at near-atomic resolution of Hsp104 in different translocation states. Substrate interactions are mediated by conserved, pore-loop tyrosines that contact an 80-angstrom-long unfolded polypeptide along the axial channel. Two protomers undergo a ratchet-like conformational change that advances pore loop-substrate interactions by two amino acids. These changes are coupled to activation of specific nucleotide hydrolysis sites and, when transmitted around the hexamer, reveal a processive rotary translocation mechanism and substrate-responsive flexibility during Hsp104-catalyzed disaggregation.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Caseínas/metabolismo , Microscopía por Crioelectrón , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/ultraestructura , Hidrólisis , Nucleótidos/química , Nucleótidos/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Regiones Promotoras Genéticas , Dominios Proteicos , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Especificidad por Sustrato , Tirosina/genética , Tirosina/metabolismo
12.
Nat Struct Mol Biol ; 23(9): 830-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27478928

RESUMEN

Hsp104, a conserved AAA+ protein disaggregase, promotes survival during cellular stress. Hsp104 remodels amyloids, thereby supporting prion propagation, and disassembles toxic oligomers associated with neurodegenerative diseases. However, a definitive structural mechanism for its disaggregase activity has remained elusive. We determined the cryo-EM structure of wild-type Saccharomyces cerevisiae Hsp104 in the ATP state, revealing a near-helical hexamer architecture that coordinates the mechanical power of the 12 AAA+ domains for disaggregation. An unprecedented heteromeric AAA+ interaction defines an asymmetric seam in an apparent catalytic arrangement that aligns the domains in a two-turn spiral. N-terminal domains form a broad channel entrance for substrate engagement and Hsp70 interaction. Middle-domain helices bridge adjacent protomers across the nucleotide pocket, thus explaining roles in ATP hydrolysis and protein disaggregation. Remarkably, substrate-binding pore loops line the channel in a spiral arrangement optimized for substrate transfer across the AAA+ domains, thereby establishing a continuous path for polypeptide translocation.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfato/química , Dominio Catalítico , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA