Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37831086

RESUMEN

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Asunto(s)
Proteína 58 DEAD Box , Isoleucina , Receptores Inmunológicos , Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Tolerancia Inmunológica , Isoleucina/genética , ARN Bicatenario/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
2.
Nano Lett ; 22(20): 8363-8371, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36219818

RESUMEN

Membrane receptor clustering is fundamental to cell-cell communication; however, the physiological function of receptor clustering in cell signaling remains enigmatic. Here, we developed a dynamic platform to induce cluster formation of neuropeptide Y2 hormone receptors (Y2R) in situ by a chelator nanotool. The multivalent interaction enabled a dynamic exchange of histidine-tagged Y2R within the clusters. Fast Y2R enrichment in clustered areas triggered ligand-independent signaling as determined by an increase in cytosolic calcium and cell migration. Notably, the calcium and motility response to ligand-induced activation was amplified in preclustered cells, suggesting a key role of receptor clustering in sensitizing the dose response to lower ligand concentrations. Ligand-independent versus ligand-induced signaling differed in the binding of arrestin-3 as a downstream effector, which was recruited to the clusters only in the presence of the ligand. This approach allows in situ receptor clustering, raising the possibility to explore different receptor activation modalities.


Asunto(s)
Histidina , Neuropéptido Y , Neuropéptido Y/metabolismo , Calcio/metabolismo , Arrestina beta 2/metabolismo , Ligandos , Transducción de Señal , Receptores de Neuropéptido/metabolismo , Quelantes , Hormonas
3.
Sensors (Basel) ; 21(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375003

RESUMEN

Label-free optical biosensors are an invaluable tool for molecular interaction analysis. Over the past 30 years, refractometric biosensors and, in particular, surface plasmon resonance have matured to the de facto standard of this field despite a significant cross reactivity to environmental and experimental noise sources. In this paper, we demonstrate that sensors that apply the spatial affinity lock-in principle (part I) and perform readout by diffraction overcome the drawbacks of established refractometric biosensors. We show this with a direct comparison of the cover refractive index jump sensitivity as well as the surface mass resolution of an unstabilized diffractometric biosensor with a state-of-the-art Biacore 8k. A combined refractometric diffractometric biosensor demonstrates that a refractometric sensor requires a much higher measurement precision than the diffractometric to achieve the same resolution. In a conceptual and quantitative discussion, we elucidate the physical reasons behind and define the figure of merit of diffractometric biosensors. Because low-precision unstabilized diffractometric devices achieve the same resolution as bulky stabilized refractometric sensors, we believe that label-free optical sensors might soon move beyond the drug discovery lab as miniaturized, mass-produced environmental/medical sensors. In fact, combined with the right surface chemistry and recognition element, they might even bring the senses of smell/taste to our smart devices.

4.
J Am Chem Soc ; 140(35): 11006-11012, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30085664

RESUMEN

The photostability of fluorescent labels comprises one of the main limitations in single-molecule fluorescence (SMF) and super-resolution imaging. An attractive strategy to increase the photostability of organic fluorophores relies on their coupling to photostabilizers, e.g., triplet excited state quenchers, rendering self-healing dyes. Herein we report the self-healing properties of trisNTA-Alexa647 fluorophores (NTA, N-nitrilotriacetic acid). Primarily designed to specifically label biomolecules containing an oligohistidine tag, we hypothesized that the increased effective concentration of Ni(II) triplet state quenchers would lead to their improved photostability. We evaluated photon output, survival time, and photon count rate of different Alexa647-labeled trisNTA constructs differing in the length and rigidity of the fluorophore- trisNTA linker. Maximum photon output enhancements of 25-fold versus Alexa647-DNA were recorded for a short tetraproline linker, superseding the solution based photostabilization by Ni(II). Steady-state and time-resolved studies illustrate that trisNTA self-healing role is associated with a dynamic excited triplet state quenching by Ni(II). Here improved photophysical/photochemical properties require for a judicious choice of linker length and rigidity, and in turn a balance between rapid dynamic triplet excited state quenching versus dynamic/static singlet excited state quenching. TrisNTA fluorophores offer superior properties for SMF allowing specific labeling and increased photostability, making them ideal candidates for extended single-molecule imaging techniques.


Asunto(s)
Colorantes Fluorescentes/química , Ácido Nitrilotriacético/química , Imagen Óptica , Microscopía Fluorescente , Estructura Molecular
5.
Angew Chem Int Ed Engl ; 57(38): 12395-12399, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29845721

RESUMEN

Small chemical/biological interaction pairs are at the forefront in tracing protein function and interaction at high signal-to-background ratios in cellular pathways. However, the optimal design of scaffold, linker, and chelator head still deserve systematic investigation to achieve the highest affinity and kinetic stability for in vitro and especially cellular applications. We report on a library of N-nitrilotriacetic acid (NTA)-based multivalent chelator heads (MCHs) built on linear, cyclic, and dendritic scaffolds and compare these with regard to their binding affinity and stability for the labeling of cellular His-tagged proteins. Furthermore, we describe a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we outline fundamental differences between the MCH scaffolds and define a cyclic trisNTA chelator that displays the highest affinity and kinetic stability of all reported reversible, low-molecular-weight interaction pairs.


Asunto(s)
Quelantes/química , Histidina/química , Oligopéptidos/química , Proteínas/metabolismo , Ciclamas , Colorantes Fluorescentes/química , Células HeLa , Compuestos Heterocíclicos/química , Histidina/genética , Histidina/metabolismo , Humanos , Cinética , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Microscopía Fluorescente , Ácido Nitrilotriacético/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Unión Proteica , Proteínas/genética
6.
Angew Chem Int Ed Engl ; 57(20): 5620-5625, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29464841

RESUMEN

Live-cell labeling, super-resolution microscopy, single-molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N-nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA-based small interaction pairs described so far. Coupled to bright organic fluorophores with fine-tuned photophysical properties, the super-chelator probes were delivered into human cells by chemically gated nanopores. These super-chelators permit kinetic profiling, multiplexed labeling of His6 - and His12 -tagged proteins as well as single-molecule-based super-resolution imaging.


Asunto(s)
Quelantes/química , Colorantes Fluorescentes/química , Ácido Nitrilotriacético/química , Proteínas/análisis , Células HeLa , Humanos , Cinética , Estructura Molecular , Imagen Óptica
7.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405971

RESUMEN

Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates-the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.

8.
Nat Commun ; 13(1): 4471, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927235

RESUMEN

Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo.


Asunto(s)
Proteínas Bacterianas , Ácido N-Acetilneuramínico , Adenosina Trifosfato/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo
9.
Front Chem ; 9: 642273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996748

RESUMEN

Extracellular signals drive the nucleation of the NLRP3 inflammasome which leads to the release of cytokines and causes inflammatory events. Hence, the inflammasome has gained enormous momentum in biomedical basic research. The detailed mechanisms of inflammasome generation and regulation remain to be elucidated. Our study was directed toward the design, convergent synthesis, and initial biochemical evaluation of activity-based probes addressing NLRP3. For this purpose, probes were assembled from a CRID3/MCC950-related NLRP3-binding unit, a linker portion and a coumarin 343 fluorophore or biotin. The affinity of our probes to NLRP3 was demonstrated through SPR measurements and their cellular activity was confirmed by reduction of the interleukin 1ß release from stimulated bone marrow-derived macrophages. The initial characterizations of NLRP3-targeting probes highlighted the coumarin probe 2 as a suitable tool compound for the cellular and biochemical analysis of the NLRP3 inflammasome.

10.
Science ; 371(6530)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436526

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread, with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. In this study, we generated four neutralizing nanobodies that target the receptor binding domain of the SARS-CoV-2 spike protein. We used x-ray crystallography and cryo-electron microscopy to define two distinct binding epitopes. On the basis of these structures, we engineered multivalent nanobodies with more than 100 times the neutralizing activity of monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor binding competition, whereas other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion and rendered the virions noninfectious.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Antígenos Virales/inmunología , Sitios de Unión de Anticuerpos , COVID-19/virología , Línea Celular , Microscopía por Crioelectrón , Epítopos , Humanos , Fusión de Membrana , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral
11.
Commun Biol ; 3(1): 138, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198384

RESUMEN

Polyacrylamide gel electrophoresis (PAGE) and immunoblotting (Western blotting) are the most common methods in life science. In conjunction with these methods, the polyhistidine-tag has proven to be a superb fusion tag for protein purification as well as specific protein detection by immunoblotting, which led to a vast amount of commercially available antibodies. Nevertheless, antibody batch-to-batch variations and nonspecific binding complicate the laborious procedure. The interaction principle applied for His-tagged protein purification by metal-affinity chromatography using N-nitrilotriacetic acid (NTA) was employed to develop small high-affinity lock-and-key molecules coupled to a fluorophore. These multivalent NTA probes allow specific detection of His-tagged proteins by fluorescence. Here, we report on HisQuick-PAGE as a fast and versatile immunoblot alternative, using such high-affinity fluorescent super-chelator probes. The procedure allows direct, fast, and ultra-sensitive in-gel detection and analysis of soluble proteins as well as intact membrane protein complexes and macromolecular ribonucleoprotein particles.


Asunto(s)
Quelantes/química , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes/química , Histidina/aislamiento & purificación , Ácido Nitrilotriacético/análogos & derivados , Compuestos Organometálicos/química , Proteínas/aislamiento & purificación , Animales , Escherichia/metabolismo , Células HeLa , Humanos , Ácido Nitrilotriacético/química , Células Sf9 , Flujo de Trabajo
12.
Mol Biol Cell ; 30(12): 1369-1376, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969885

RESUMEN

How membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy. We identified mEos3.2 and mMaple3 to be suitable for molecular quantification through blinking histogram analysis. We designed synthetic and genetic dimers of mEos3.2 as well as fusion proteins of monomeric and dimeric membrane proteins as reference structures, and we demonstrate their versatile use for quantitative superresolution imaging in vitro and in situ. We further found that the blinking behavior of mEos3.2 and mMaple3 is modified by a reducing agent, offering the possibility to adjust blinking parameters according to experimental needs.


Asunto(s)
Dimerización , Membrana Celular/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Probabilidad , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA