Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2400727121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38819998

RESUMEN

Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.

2.
Small ; 20(10): e2306350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880880

RESUMEN

Nanoscale superlattice (SL) structures have proven to be effective in enhancing the thermoelectric (TE) properties of thin films. Herein, the main phase of antimony telluride (Sb2 Te3 ) thin film with sub-nanometer layers of antimony oxide (SbOx ) is synthesized via atomic layer deposition (ALD) at a low temperature of 80 °C. The SL structure is tailored by varying the cycle numbers of Sb2 Te3 and SbOx . A remarkable power factor of 520.8 µW m-1 K-2 is attained at room temperature when the cycle ratio of SbOx and Sb2 Te3 is set at 1:1000 (i.e., SO:ST = 1:1000), corresponding to the highest electrical conductivity of 339.8 S cm-1 . The results indicate that at the largest thickness, corresponding to ten ALD cycles, the SbOx layers act as a potential barrier that filters out the low-energy charge carriers from contributing to the overall electrical conductivity. In addition to enhancing the scattering of the mid-to-long-wavelength at the SbOx /Sb2 Te3 interface, the presence of the SbOx sub-layer induces the confinement effect and strain forces in the Sb2 Te3 thin film, thereby effectively enhancing the Seebeck coefficient and reducing the thermal conductivity. These findings provide a new perspective on the design of SL-structured TE materials and devices.

3.
Phys Rev Lett ; 127(9): 097203, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506205

RESUMEN

Since the discovery of charge disproportionation in the FeO_{2} square-lattice compound Sr_{3}Fe_{2}O_{7} by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained "hidden" to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO_{2} planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on "hidden order" in other materials.

4.
Phys Rev Lett ; 114(9): 096402, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793832

RESUMEN

Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu_{2}O_{3}, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu_{2}O_{3} along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons.


Asunto(s)
Compuestos de Calcio/química , Cobre/química , Modelos Teóricos , Óxidos/química , Anisotropía , Electrones
5.
Phys Rev Lett ; 112(14): 147401, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24766010

RESUMEN

Taking spinon excitations in the quantum antiferromagnet CaCu2O3 as an example, we demonstrate that femtosecond dynamics of magnetic electronic excitations can be probed by direct resonant inelastic x-ray scattering (RIXS). To this end, we isolate the contributions of single and double spin-flip excitations in experimental RIXS spectra, identify the physical mechanisms that cause them, and determine their respective time scales. By comparing theory and experiment, we find that double spin flips need a finite amount of time to be generated, rendering them sensitive to the core-hole lifetime, whereas single spin flips are, to a very good approximation, independent of it. This shows that RIXS can grant access to time-domain dynamics of excitations and illustrates how RIXS experiments can distinguish between excitations in correlated electron systems based on their different time dependence.

6.
ACS Nano ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38919047

RESUMEN

Atomic layer deposition (ALD) is an effective technique for depositing thin films with precise control of layer thickness and functional properties. In this work, Sb2Te3-Sb2Se3 nanostructures were synthesized using thermal ALD. A decrease in the Sb2Te3 layer thickness led to the emergence of distinct peaks from the Laue rings, indicative of a highly textured film structure with optimized crystallinity. Density functional theory simulations revealed that carrier redistribution occurs at the interface to establish charge equilibrium. By carefully optimizing the layer thicknesses, we achieved an obvious enhancement in the Seebeck coefficient, reaching a peak figure of merit (zT) value of 0.38 at room temperature. These investigations not only provide strong evidence for the potential of ALD manipulation to improve the electrical performance of metal chalcogenides but also offer valuable insights into achieving high performance in two-dimensional materials.

7.
Phys Rev Lett ; 110(18): 186401, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23683224

RESUMEN

We present high-resolution angle-resolved photoemission spectra of the heavy-fermion superconductor URu2Si2. Detailed measurements as a function of both photon energy and temperature allow us to disentangle a variety of spectral features, revealing the evolution of the low-energy electronic structure across the "hidden order" transition. Above the transition, our measurements reveal the existence of weakly dispersive states that exhibit a large scattering rate and do not appear to shift from above to below the Fermi level, as previously reported. Upon entering the hidden order phase, these states rapidly hybridize with light conduction band states and transform into a coherent heavy fermion liquid, coincident with a dramatic drop in the scattering rate. This evolution is in stark contrast with the gradual crossover expected in Kondo lattice systems, which we attribute to the coupling of the heavy fermion states to the hidden order parameter.

8.
Phys Rev Lett ; 110(8): 087403, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473202

RESUMEN

We report a high-resolution resonant inelastic soft x-ray scattering study of the quantum magnetic spin-chain materials Li(2)CuO(2) and CuGeO(3). By tuning the incoming photon energy to the oxygen K edge, a strong excitation around 3.5 eV energy loss is clearly resolved for both materials. Comparing the experimental data to many-body calculations, we identify this excitation as a Zhang-Rice singlet exciton on neighboring CuO(4) plaquettes. We demonstrate that the strong temperature dependence of the inelastic scattering related to this high-energy exciton enables us to probe short-range spin correlations on the 1 meV scale with outstanding sensitivity.

9.
Nat Commun ; 13(1): 2472, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513364

RESUMEN

Spin-momentum locking in topological insulators and materials with Rashba-type interactions is an extremely attractive feature for novel spintronic devices and is therefore under intense investigation. Significant efforts are underway to identify new material systems with spin-momentum locking, but also to create heterostructures with new spintronic functionalities. In the present study we address both subjects and investigate a van der Waals-type heterostructure consisting of the topological insulator Bi2Se3 and a single Se-Ta-Se triple-layer (TL) of H-type TaSe2 grown by a method which exploits an interface reaction between the adsorbed metal and selenium. We then show, using surface x-ray diffraction, that the symmetry of the TaSe2-like TL is reduced from D3h to C3v resulting from a vertical atomic shift of the tantalum atom. Spin- and momentum-resolved photoemission indicates that, owing to the symmetry lowering, the states at the Fermi surface acquire an in-plane spin component forming a surface contour with a helical Rashba-like spin texture, which is coupled to the Dirac cone of the substrate. Our approach provides a route to realize chiral two-dimensional electron systems via interface engineering in van der Waals epitaxy that do not exist in the corresponding bulk materials.

10.
Nat Commun ; 11(1): 1247, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144243

RESUMEN

Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.

11.
J Phys Condens Matter ; 29(3): 035502, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-27869641

RESUMEN

In existing theoretical approaches to core-level excitations of transition-metal ions in solids relaxation and polarization effects due to the inner core hole are often ignored or described phenomenologically. Here we set up an ab initio computational scheme that explicitly accounts for such physics in the calculation of x-ray absorption and resonant inelastic x-ray scattering spectra. Good agreement is found with experimental transition-metal L-edge data for the strongly correlated d 9 cuprate Li2CuO2, for which we determine the absolute scattering intensities. The newly developed methodology opens the way for the investigation of even more complex d n electronic structures of group VI B to VIII B correlated oxide compounds.

12.
Sci Rep ; 6: 22514, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26957325

RESUMEN

Determining the manganese concentration in shells of freshwater bivalves provides a unique way to obtain information about climate and environmental changes during time-intervals that pre-date instrumental data records. This approach, however, relies on a thorough understanding of how manganese is incorporated into the shell material -a point that remained controversial so far. Here we clarify this issue, using state-of-the-art X-ray absorption and X-ray emission spectroscopy in combination with band structure calculations. We verify that in the shells of all studied species manganese is incorporated as high-spin Mn(2+), i.e. manganese always has the same valence as calcium. More importantly, the unique chemical sensitivity of valence-to-core X-ray emission enables us to show that manganese is always coordinated by a CO3-octahedron. This, firstly, provides firm experimental evidence for manganese being primarily located in the inorganic carbonate. Secondly, it indicates that the structure of the aragonitic host is locally altered such that manganese attains an octahedral, calcitic coordination. This modification at the atomic level enables the bivalve to accommodate many orders of magnitude more manganese in its aragonitic shell than found in any non-biogenic aragonite. This outstanding feature is most likely facilitated through the non-classical crystallization pathway of bivalve shells.


Asunto(s)
Exoesqueleto/metabolismo , Carbonato de Calcio/metabolismo , Manganeso/metabolismo , Moluscos/metabolismo , Animales , Calcio/metabolismo , Espectrometría por Rayos X , Espectroscopía de Absorción de Rayos X
13.
Nat Commun ; 7: 10563, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26884151

RESUMEN

Strongly correlated insulators are broadly divided into two classes: Mott-Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2.

14.
J Phys Condens Matter ; 27(33): 335501, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26221981

RESUMEN

We present an investigation of the valence-electron excitation spectra including the collective plasmon modes of SrTiO3, LaAlO3 and their heterostructures with non-resonant inelastic x-ray scattering. We analyse the spectra using calculations based on first principles and atomic multiplet models. We demonstrate the feasibility of performing valence IXS experiments in a total reflection geometry. Surprisingly, we find that the plasmon, interband and semicore excitations in multilayers are well described as a superposition of bulk-compound spectra even in a superstructure composing of layers of only one atomic layer thickness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA