Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(19)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581437

RESUMEN

We discuss the fabrication of gas-analytical multisensor arrays based on ZnO nanorods grown via a hydrothermal route directly on a multielectrode chip. The protocol to deposit the nanorods over the chip includes the primary formation of ZnO nano-clusters over the surface and secondly the oxide hydrothermal growth in a solution that facilitates the appearance of ZnO nanorods in the high aspect ratio which comprise a network. We have tested the proof-of-concept prototype of the ZnO nanorod network-based chip heated up to 400 °C versus three alcohol vapors, ethanol, isopropanol and butanol, at approx. 0.2-5 ppm concentrations when mixed with dry air. The results indicate that the developed chip is highly sensitive to these analytes with a detection limit down to the sub-ppm range. Due to the pristine differences in ZnO nanorod network density the chip yields a vector signal which enables the discrimination of various alcohols at a reasonable degree via processing by linear discriminant analysis even at a sub-ppm concentration range suitable for practical applications.

2.
ChemSusChem ; 17(2): e202300809, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37721363

RESUMEN

In recent years, there is growing interest in solid-state electrolytes due to their many promising properties, making them key to the future of battery technology. This future depends among other things on easy processing technologies for the solid electrolyte. The sodium superionic conductor (NASICON) Na3 Zr2 Si2 PO12 is a promising sodium solid electrolyte; however, reported methods of synthesis are time consuming. To this effect, attempt was made to develop a simple time efficient alternative processing route. Firstly, a comparative study between a new method and commonly reported methods was carried out to gain a clear insight into the mechanism of formation of sodium superionic conductors (NASICON). It was observed that through a careful selection of precursors, and the use of high-energy milling (HEM) the NASICON conversion process was enhanced and optimized, this reduces the processing time and required energy, opening up a new alternative route for synthesis. The obtained solid electrolyte was stable during Na cycling vs. Na-metal at 1 mA cm-1 , and a room temperature conductivity of 1.8 mS cm-1 was attained.

3.
Adv Healthc Mater ; : e2304157, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870600

RESUMEN

For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4ß1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.

4.
Langmuir ; 29(5): 1562-72, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23256459

RESUMEN

Electrospinning is a promising method to mimic the native structure of the extracellular matrix. Collagen is the material of choice, since it is a natural fibrous structural protein. It is an open question how much the spinning process preserves or alters the native structure of collagen. There are conflicting results in the literature, mainly due to the different solvent systems in use and due to the fact that gelatin is employed as a reference state for the completely unfolded state of collagen in calculations. Here we used circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR) to investigate the structure of regenerated collagen samples and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to illuminate the electrospun nanofibers. Collagen is mostly composed of folded and unfolded structures with different ratios, depending on the applied temperature. Therefore, CD spectra were acquired as a temperature series during thermal denaturation of native calf skin collagen type I and used as a reference basis to extract the degree of collagen folding in the regenerated electrospun samples. We discussed three different approaches to determine the folded fraction of collagen, based on CD spectra of collagen from 185 to 260 nm, since it would not be sufficient to obtain simply the fraction of folded structure θ from the ellipticity at a single wavelength of 221.5 nm. We demonstrated that collagen almost completely unfolded in fluorinated solvents and partially preserved its folded structure θ in HAc/EtOH. However, during the spinning process it refolded and the PP-II fraction increased. Nevertheless, it did not exceed 42% as deduced from the different secondary structure evaluation methods, discussed here. PP-II fractions in electrospun collagen nanofibers were almost same, being independent from the initial solvent systems which were used to solubilize the collagen for electrospinning process.


Asunto(s)
Colágeno/química , Electricidad , Nanofibras/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
5.
Macromol Rapid Commun ; 34(11): 916-21, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23533161

RESUMEN

Intrinsically glucoside-based microspheres are prepared in olive oil via a water in oil inverse suspension polymerization. The microspheres are characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) microscopy, and X-ray photoelectron spectroscopy (XPS), evidencing the intrinsic glucose character of the spheres. A novel boronic acid fluorescent molecule was subsequently conjugated to the microspheres in an aqueous environment, exhibiting the spatial and uniform distribution of glucoside as well as the affinity of the microspheres to bind with boron, evidenced via fluorescence spectroscopy measurements.


Asunto(s)
Boro/química , Glucósidos/química , Polímeros/química , Microscopía Electrónica de Rastreo , Microesferas , Espectroscopía de Fotoelectrones , Polimerizacion , Polímeros/síntesis química , Propiedades de Superficie
6.
Macromol Rapid Commun ; 33(13): 1108-13, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22539047

RESUMEN

Boronic acid-functionalized microspheres are prepared for the first time via mild epoxide ring opening based on porous cross-linked polymeric microspheres (diameter ≈ 10 µm, porosity ≈ 1000 Å). Quantitative chemical analysis by XPS and EA evidences that there is a greater functionalization with boronic acid when employing a sequential synthetic method [1.7 atom% boron (XPS); 1.12 wt% nitrogen (EA)] versus a one-pot synthetic method [0.2 atom% boron (XPS); 0.60 wt% nitrogen (EA)] yielding grafting densities ranging from approximately 2.5 molecules of boronic acid per nm(2) to 1 molecule of boronic acid per nm(2), respectively. Furthermore, the boronic acid-functionalized microspheres are conjugated with a novel fluorescent glucose molecule demonstrating a homogeneous spatial distribution of boronic acid.


Asunto(s)
Ácidos Borónicos/química , Técnicas de Química Sintética/métodos , Polímeros/síntesis química , Microesferas , Estructura Molecular , Polímeros/química
7.
ACS Omega ; 5(36): 22861-22873, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32954135

RESUMEN

The suitability of multication doping to stabilize the disordered Fd3̅m structure in a spinel is reported here. In this work, LiNi0.3Cu0.1Fe0.2Mn1.4O4 was synthesized via a sol-gel route at a calcination temperature of 850 °C. LiNi0.3Cu0.1Fe0.2Mn1.4O4 is evaluated as positive electrode material in a voltage range between 3.5 and 5.3 V (vs Li+/Li) with an initial specific discharge capacity of 126 mAh g-1 at a rate of C/2. This material shows good cycling stability with a capacity retention of 89% after 200 cycles and an excellent rate capability with the discharge capacity reaching 78 mAh g-1 at a rate of 20C. In operando X-ray diffraction (XRD) measurements with a laboratory X-ray source between 3.5 and 5.3 V at a rate of C/10 reveal that the (de)lithiation occurs via a solid-solution mechanism where a local variation of lithium content is observed. A simplified estimation based on the in operando XRD analysis suggests that around 17-31 mAh g-1 of discharge capacity in the first cycle is used for a reductive parasitic reaction, hindering a full lithiation of the positive electrode at the end of the first discharge.

8.
J Mater Chem B ; 2(23): 3578-3581, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263794

RESUMEN

A degradable polyphthalaldehyde-polystyrene block copolymer generated by modular ligation is reported for the first time serving as a nanochannel template for the formation of nanostructured materials. The polyphthalaldehyde-b-polystyrene copolymer was spin-coated onto a surface with subsequent polyphthalaldehyde block removal. Block conjugation and block removal were confirmed by H-NMR, SEC, AFM, and SEM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA