Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Environ Microbiol ; 88(2): e0213721, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788065

RESUMEN

It has been predicted that 30 to 80% of archaeal genomes remain annotated as hypothetical proteins with no assigned gene function. Further, many archaeal organisms are difficult to grow or are unculturable. To overcome these technical and experimental hurdles, we developed a high-throughput functional genomics screen that utilizes capillary electrophoresis (CE) to identify nucleic acid modifying enzymes based on activity rather than sequence homology. Here, we describe a functional genomics screening workflow to find DNA modifying enzyme activities encoded by the hyperthermophile Thermococcus kodakarensis (T. kodakarensis). Large DNA insert fosmid libraries representing an ∼5-fold average coverage of the T. kodakarensis genome were prepared in Escherichia coli. RNA-seq showed a high fraction (84%) of T. kodakarensis genes were transcribed in E. coli despite differences in promoter structure and translational machinery. Our high-throughput screening workflow used fluorescently labeled DNA substrates directly in heat-treated lysates of fosmid clones with capillary electrophoresis detection of reaction products. Using this method, we identified both a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and a novel AP lyase DNA repair enzyme family (termed 'TK0353') that is found only in a small subset of Thermococcales. The screening methodology described provides a fast and efficient way to explore the T. kodakarensis genome for a variety of nucleic acid modifying activities and may have implications for similar exploration of enzymes and pathways that underlie core cellular processes in other Archaea. IMPORTANCE This study provides a rapid, simple, high-throughput method to discover novel archaeal nucleic acid modifying enzymes by utilizing a fosmid genomic library, next-generation sequencing, and capillary electrophoresis. The method described here provides the details necessary to create 384-well fosmid library plates from Thermococcus kodakarensis genomic DNA, sequence 384-well fosmids plates using Illumina next-generation sequencing, and perform high-throughput functional read-out assays using capillary electrophoresis to identify a variety of nucleic acid modifying activities, including DNA cleavage and ligation. We used this approach to identify a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and identify a novel AP lyase enzyme (TK0353) that lacks sequence homology to known nucleic acid modifying enzymes.


Asunto(s)
Proteínas Arqueales , Thermococcus , Proteínas Arqueales/metabolismo , ADN de Archaea/genética , ADN de Archaea/metabolismo , Electroforesis Capilar , Escherichia coli/genética , Escherichia coli/metabolismo , Genómica
2.
J Bacteriol ; 198(14): 1906-1917, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27137495

RESUMEN

The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.


Asunto(s)
Archaea/genética , Proteínas Arqueales/genética , Regulación de la Expresión Génica Arqueal , Transcripción Genética , Archaea/metabolismo , Proteínas Arqueales/metabolismo
3.
Biochemistry ; 53(47): 7386-95, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25354081

RESUMEN

The transition between dormant and active Mycobacterium tuberculosis infection requires reorganization of its lipid metabolism and activation of a battery of serine hydrolase enzymes. Among these serine hydrolases, Rv0045c is a mycobacterial-specific serine hydrolase with limited sequence homology outside mycobacteria but structural homology to divergent bacterial hydrolase families. Herein, we determined the global substrate specificity of Rv0045c against a library of fluorogenic hydrolase substrates, constructed a combined experimental and computational model for its binding pocket, and performed comprehensive substitutional analysis to develop a structural map of its binding pocket. Rv0045c showed strong substrate selectivity toward short, straight chain alkyl esters with the highest activity toward four atom chains. This strong substrate preference was maintained through the combined action of residues in a flexible loop connecting the cap and α/ß hydrolase domains and in residues close to the catalytic triad. Two residues bracketing the substrate-binding pocket (Gly90 and His187) were essential to maintaining the narrow substrate selectivity of Rv0045c toward various acyl ester substituents, as independent conversion of these residues significantly increased its catalytic activity and broadened its substrate specificity. Focused saturation mutagenesis of position 187 implicated this residue, as the differentiation point between the substrate specificity of Rv0045c and the structurally homologous ybfF hydrolase family. Insertion of the analogous tyrosine residue from ybfF hydrolases into Rv0045c increased the catalytic activity of Rv0045 by over 20-fold toward diverse ester substrates. The unique binding pocket structure and selectivity of Rv0045c provide molecular indications of its biological role and evidence for expanded substrate diversity in serine hydrolases from M. tuberculosis.


Asunto(s)
Hidrolasas/metabolismo , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Hidrolasas/química , Cinética , Modelos Moleculares , Serina , Especificidad por Sustrato
4.
J Biol Chem ; 288(15): 10522-35, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23430251

RESUMEN

Tularemia is a deadly, febrile disease caused by infection by the gram-negative bacterium, Francisella tularensis. Members of the ubiquitous serine hydrolase protein family are among current targets to treat diverse bacterial infections. Herein we present a structural and functional study of a novel bacterial carboxylesterase (FTT258) from F. tularensis, a homologue of human acyl protein thioesterase (hAPT1). The structure of FTT258 has been determined in multiple forms, and unexpectedly large conformational changes of a peripheral flexible loop occur in the presence of a mechanistic cyclobutanone ligand. The concomitant changes in this hydrophobic loop and the newly exposed hydrophobic substrate binding pocket suggest that the observed structural changes are essential to the biological function and catalytic activity of FTT258. Using diverse substrate libraries, site-directed mutagenesis, and liposome binding assays, we determined the importance of these structural changes to the catalytic activity and membrane binding activity of FTT258. Residues within the newly exposed hydrophobic binding pocket and within the peripheral flexible loop proved essential to the hydrolytic activity of FTT258, indicating that structural rearrangement is required for catalytic activity. Both FTT258 and hAPT1 also showed significant association with liposomes designed to mimic bacterial or human membranes, respectively, even though similar structural rearrangements for hAPT1 have not been reported. The necessity for acyl protein thioesterases to have maximal catalytic activity near the membrane surface suggests that these conformational changes in the protein may dually regulate catalytic activity and membrane association in bacterial and human homologues.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/enzimología , Francisella tularensis/enzimología , Serina Endopeptidasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Francisella tularensis/genética , Humanos , Mutagénesis Sitio-Dirigida , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
5.
Biochim Biophys Acta ; 1824(9): 1024-30, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22659119

RESUMEN

Acetyl esterases from carbohydrate esterase family 7 exhibit unusual substrate specificity. These proteins catalyze the cleavage of disparate acetate esters with high efficiency, but are unreactive to larger acyl groups. The structural basis for this distinct selectivity profile is unknown. Here, we investigate a thermostable acetyl esterase (TM0077) from Thermotoga maritima using evolutionary relationships, structural information, fluorescent kinetic measurements, and site directed mutagenesis. We measured the kinetic and structural determinants for this specificity using a diverse series of small molecule enzyme substrates, including novel fluorogenic esters. These experiments identified two hydrophobic plasticity residues (Pro228, and Ile276) surrounding the nucleophilic serine that impart this specificity of TM0077 for small, straight-chain esters. Substitution of these residues with alanine imparts broader specificity to TM0077 for the hydrolysis of longer and bulkier esters. Our results suggest the specificity of acetyl esterases have been finely tuned by evolution to catalyze the removal of acetate groups from diverse substrates, but can be modified by focused amino acid substitutions to yield enzymes capable of cleaving larger ester functionalities.


Asunto(s)
Acetilesterasa/química , Proteínas Bacterianas/química , Thermotoga maritima/enzimología , Acetilesterasa/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Ésteres/química , Ésteres/metabolismo , Fluoresceínas/química , Fluoresceínas/metabolismo , Colorantes Fluorescentes , Hidrólisis , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
6.
Front Microbiol ; 12: 657356, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093470

RESUMEN

Thermococcus kodakarensis (T. kodakarensis), a hyperthermophilic, genetically accessible model archaeon, encodes two putative restriction modification (R-M) defense systems, TkoI and TkoII. TkoI is encoded by TK1460 while TkoII is encoded by TK1158. Bioinformative analysis suggests both R-M enzymes are large, fused methyltransferase (MTase)-endonuclease polypeptides that contain both restriction endonuclease (REase) activity to degrade foreign invading DNA and MTase activity to methylate host genomic DNA at specific recognition sites. In this work, we demonsrate T. kodakarensis strains deleted for either or both R-M enzymes grow more slowly but display significantly increased competency compared to strains with intact R-M systems, suggesting that both TkoI and TkoII assist in maintenance of genomic integrity in vivo and likely protect against viral- or plasmid-based DNA transfers. Pacific Biosciences single molecule real-time (SMRT) sequencing of T. kodakarensis strains containing both, one or neither R-M systems permitted assignment of the recognition sites for TkoI and TkoII and demonstrated that both R-M enzymes are TypeIIL; TkoI and TkoII methylate the N6 position of adenine on one strand of the recognition sequences GTGAAG and TTCAAG, respectively. Further in vitro biochemical characterization of the REase activities reveal TkoI and TkoII cleave the DNA backbone GTGAAG(N)20/(N)18 and TTCAAG(N)10/(N)8, respectively, away from the recognition sequences, while in vitro characterization of the MTase activities reveal transfer of tritiated S-adenosyl methionine by TkoI and TkoII to their respective recognition sites. Together these results demonstrate TkoI and TkoII restriction systems are important for protecting T. kodakarensis genome integrity from invading foreign DNA.

7.
Front Microbiol ; 12: 681150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054788

RESUMEN

Histone proteins compact and organize DNA resulting in a dynamic chromatin architecture impacting DNA accessibility and ultimately gene expression. Eukaryotic chromatin landscapes are structured through histone protein variants, epigenetic marks, the activities of chromatin-remodeling complexes, and post-translational modification of histone proteins. In most Archaea, histone-based chromatin structure is dominated by the helical polymerization of histone proteins wrapping DNA into a repetitive and closely gyred configuration. The formation of the archaeal-histone chromatin-superhelix is a regulatory force of adaptive gene expression and is likely critical for regulation of gene expression in all histone-encoding Archaea. Single amino acid substitutions in archaeal histones that block formation of tightly packed chromatin structures have profound effects on cellular fitness, but the underlying gene expression changes resultant from an altered chromatin landscape have not been resolved. Using the model organism Thermococcus kodakarensis, we genetically alter the chromatin landscape and quantify the resultant changes in gene expression, including unanticipated and significant impacts on provirus transcription. Global transcriptome changes resultant from varying chromatin landscapes reveal the regulatory importance of higher-order histone-based chromatin architectures in regulating archaeal gene expression.

8.
DNA Repair (Amst) ; 86: 102767, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31841800

RESUMEN

Reactive oxygen species drive the oxidation of guanine to 8-oxoguanine (8oxoG), which threatens genome integrity. The repair of 8oxoG is carried out by base excision repair enzymes in Bacteria and Eukarya, however, little is known about archaeal 8oxoG repair. This study identifies a member of the Ogg-subfamily archaeal GO glycosylase (AGOG) in Thermococcus kodakarensis, an anaerobic, hyperthermophilic archaeon, and delineates its mechanism, kinetics, and substrate specificity. TkoAGOG is the major 8oxoG glycosylase in T. kodakarensis, but is non-essential. In addition to TkoAGOG, the major apurinic/apyrimidinic (AP) endonuclease (TkoEndoIV) required for archaeal base excision repair and cell viability was identified and characterized. Enzymes required for the archaeal oxidative damage base excision repair pathway were identified and the complete pathway was reconstituted. This study illustrates the conservation of oxidative damage repair across all Domains of life.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , Thermococcus/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Daño del ADN , ADN Glicosilasas/genética , Guanina/análogos & derivados , Guanina/metabolismo , Estrés Oxidativo , Thermococcus/genética
9.
Front Mol Biosci ; 6: 28, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069234

RESUMEN

A variant of 9°N DNA polymerase [Genbank ID (AAA88769.1)] with three mutations (D141A, E143A, A485L) and commercialized under the name "Therminator DNA polymerase" has the ability to incorporate a variety of modified nucleotide classes. This Review focuses on how Therminator DNA Polymerase has enabled new technologies in synthetic biology and DNA sequencing. In addition, we discuss mechanisms for increased modified nucleotide incorporation.

10.
Transcription ; 8(5): 288-296, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28598254

RESUMEN

Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.


Asunto(s)
Daño del ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Thermococcus/enzimología , Proteínas Arqueales/metabolismo , ADN de Archaea/genética , ARN de Archaea/metabolismo , ARN Mensajero/metabolismo , Thermococcus/genética , Elongación de la Transcripción Genética
11.
Bio Protoc ; 7(22)2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29276725

RESUMEN

The advent of single cell genomics and the continued use of metagenomic profiling in diverse environments has exponentially increased the known diversity of life. The recovered and assembled genomes predict physiology, consortium interactions and gene function, but experimental validation of metabolisms and molecular pathways requires more directed approaches. Gene function-and the correlation between phenotype and genotype is most obviously studied with genetics, and it is therefore critical to develop techniques permitting rapid and facile strain construction. Many new and candidate archaeal lineages have recently been discovered, but experimental, genetic access to archaeal genomes is currently limited to a few model organisms. The results obtained from manipulating the genomes of these genetically-accessible organisms have already had profound effects on our understanding of archaeal physiology and information processing systems, and these continued studies also help resolve phylogenetic reconstruction of the tree of life. The hyperthermophilic, planktonic, marine heterotrophic archaeon Thermococcus kodakarensis, has emerged as an ideal genetic system with a suite of techniques available to add or delete encoded activities, or modify expression of genes in vivo. We outline here techniques to rapidly and markerlessly delete a single, or repetitively delete several, continuous sequences from the T. kodakarensis genome. Our procedure includes details on the construction of the plasmid DNA necessary for transformation that directs, via homologous recombination, integration into the genome, identification of strains that have incorporated plasmid sequences (termed intermediate strains), and confirmation of plasmid excision, leading to deletion of the target gene in final strains. Near identical procedures can be employed to modify, rather than delete, a genomic locus.

12.
Front Microbiol ; 8: 2084, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163389

RESUMEN

The initiation of DNA replication is typically tightly regulated by proteins that form initiation complexes at specific sequences known as replication origins. In Archaea and Eukaryotes, Cdc6, a near-universally conserved protein binds and facilitates the origin-dependent assembly of the replicative apparatus. TK1901 encodes Cdc6 in Thermococcus kodakarensis but, as we report here, TK1901 and the presumed origin of replication can be deleted from the genome of this hyperthermophilic Archaeon without any detectable effects on growth, genetic competence or the ability to support autonomous plasmid replication. All regions of the genome were equally represented in the sequences generated by whole genome sequencing of DNA isolated from T. kodakarensis strains with or without TK1901, inconsistent with DNA initiation occurring at one or few origins, and instead suggestive of replication initiating at many sites distributed throughout the genome. We were unable to generate strains lacking the recombination factors, RadA or RadB, consistent with T. kodakarensis cells, that are oligoploid (7-19 genomes per cell), employing a recombination-based mechanism of DNA replication. Deletion of the previously presumed origin region reduced the long-term viability of cultures supporting the possibility that retaining an origin-based mechanism of DNA initiation provides a survival mechanism for stationary phase cells with only one genome.

13.
Methods Mol Biol ; 1276: 263-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665569

RESUMEN

Transcription elongation by multisubunit RNA polymerases (RNAPs) is processive, but neither uniform nor continuous. Regulatory events during elongation include pausing, backtracking, arrest, and transcription termination, and it is critical to determine whether the absence of continued synthesis is transient or permanent. Here we describe mechanisms to generate large quantities of stable archaeal elongation complexes on a solid support to permit (1) single-round transcription, (2) walking of RNAP to any defined template position, and (3) discrimination of transcripts that are associated with RNAP from those that are released to solution. This methodology is based on untagged proteins transcribing biotin- and digoxigenin-labeled DNA templates in association with paramagnetic particles.


Asunto(s)
Archaea/fisiología , Técnicas In Vitro/métodos , Biología Molecular/métodos , Terminación de la Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA