Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34286830

RESUMEN

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19 , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico , Humanos , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Manejo de Especímenes
2.
J Am Chem Soc ; 141(34): 13442-13453, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31373799

RESUMEN

O-Linked α-N-acetylgalactosamine (O-GalNAc) glycans constitute a major part of the human glycome. They are difficult to study because of the complex interplay of 20 distinct glycosyltransferase isoenzymes that initiate this form of glycosylation, the polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). Despite proven disease relevance, correlating the activity of individual GalNAc-Ts with biological function remains challenging due to a lack of tools to probe their substrate specificity in a complex biological environment. Here, we develop a "bump-hole" chemical reporter system for studying GalNAc-T activity in vitro. Individual GalNAc-Ts were rationally engineered to contain an enlarged active site (hole) and probed with a newly synthesized collection of 20 (bumped) uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) analogs to identify enzyme-substrate pairs that retain peptide specificities but are otherwise completely orthogonal to native enzyme-substrate pairs. The approach was applicable to multiple GalNAc-T isoenzymes, including GalNAc-T1 and -T2 that prefer nonglycosylated peptide substrates and GalNAcT-10 that prefers a preglycosylated peptide substrate. A detailed investigation of enzyme kinetics and specificities revealed the robustness of the approach to faithfully report on GalNAc-T activity and paves the way for studying substrate specificities in living systems.


Asunto(s)
Acetilgalactosamina/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Ingeniería de Proteínas , Uridina Difosfato/metabolismo , Acetilgalactosamina/química , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Mutagénesis , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/genética , Especificidad por Sustrato , Uridina Difosfato/química , Polipéptido N-Acetilgalactosaminiltransferasa
3.
Nature ; 488(7409): 86-90, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22859206

RESUMEN

Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation. Colonization of the root occurs despite a sophisticated plant immune system, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plant-microbe interactions derived from complex soil communities.


Asunto(s)
Arabidopsis/microbiología , Endófitos/clasificación , Endófitos/aislamiento & purificación , Metagenoma , Raíces de Plantas/microbiología , Microbiología del Suelo , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Arabidopsis/clasificación , Arabidopsis/crecimiento & desarrollo , Endófitos/genética , Genotipo , Hibridación Fluorescente in Situ , Raíces de Plantas/clasificación , Raíces de Plantas/crecimiento & desarrollo , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Rizosfera , Ribotipificación , Análisis de Secuencia de ADN , Simbiosis
4.
Bioinform Adv ; 4(1): vbad181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213823

RESUMEN

Summary: Barcode-based sequence census assays utilize custom or random oligonucloetide sequences to label various biological features, such as cell-surface proteins or CRISPR perturbations. These assays all rely on barcode quantification, a task that is complicated by barcode design and technical noise. We introduce a modular approach to quantifying barcodes that achieves speed and memory improvements over existing tools. We also introduce a set of quality control metrics, and accompanying tool, for validating barcode designs. Availability and implementation: https://github.com/pachterlab/kb_python, https://github.com/pachterlab/qcbc.

5.
bioRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39149271

RESUMEN

Spatial genomic technologies include imaging- and sequencing-based methods (1-3). An emerging subcategory of sequencing-based methods relies on a surface coated with coordinate-associated DNA barcodes, which are leveraged to tag endogenous nucleic acids or cells in an overlaid tissue section (4-7). However, the physical registration of DNA barcodes to spatial coordinates is challenging, necessitating either high density printing of coordinate-specific oligonucleotides or in situ sequencing/probing of randomly deposited, oligonucleotide-bearing beads. As a consequence, the surface areas available to sequencing-based spatial genomic methods are constrained by the time, labor, cost, and instrumentation required to either print, synthesize or decode a coordinate-tagged surface. To address this challenge, we developed SCOPE (Spatial reConstruction via Oligonucleotide Proximity Encoding), an optics-free, DNA microscopy (8) inspired method. With SCOPE, the relative positions of randomly deposited beads on a 2D surface are inferred from the ex situ sequencing of chimeric molecules formed from diffusing "sender" and tethered "receiver" oligonucleotides. As a first proof-of-concept, we apply SCOPE to reconstruct an asymmetric "swoosh" shape resembling the Nike logo (16.75 × 9.25 mm). Next, we use a microarray printer to encode a "color" version of the Snellen eye chart for visual acuity (17.18 × 40.97 mm), and apply SCOPE to achieve optics-free reconstruction of individual letters. Although these are early demonstrations of the concept and much work remains to be done, we envision that the optics-free, sequencing-based quantitation of the molecular proximities of DNA barcodes will enable spatial genomics in constant experimental time, across fields of view and at resolutions that are determined by sequencing depth, bead size, and diffusion kinetics, rather than the limitations of optical instruments or microarray printers.

6.
HardwareX ; 10: e00201, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35607693

RESUMEN

We present colosseum, a low-cost, modular, and automated fluid sampling device for scalable fluidic applications. The colosseum fraction collector uses a single motor, can be built for less than $100 using off-the-shelf and 3D-printed components, and can be assembled in less than an hour. Build Instructions and source files are available at https://doi.org/10.5281/zenodo.4677604.

7.
Sci Adv ; 7(48): eabh1683, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34826233

RESUMEN

We present an organism-wide, transcriptomic cell atlas of the hydrozoan medusa Clytia hemisphaerica and describe how its component cell types respond to perturbation. Using multiplexed single-cell RNA sequencing, in which individual animals were indexed and pooled from control and perturbation conditions into a single sequencing run, we avoid artifacts from batch effects and are able to discern shifts in cell state in response to organismal perturbations. This work serves as a foundation for future studies of development, function, and regeneration in a genetically tractable jellyfish species. Moreover, we introduce a powerful workflow for high-resolution, whole-animal, multiplexed single-cell genomics that is readily adaptable to other traditional or nontraditional model organisms.

8.
Nat Biotechnol ; 39(7): 813-818, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33795888

RESUMEN

We describe a workflow for preprocessing of single-cell RNA-sequencing data that balances efficiency and accuracy. Our workflow is based on the kallisto and bustools programs, and is near optimal in speed with a constant memory requirement providing scalability for arbitrarily large datasets. The workflow is modular, and we demonstrate its flexibility by showing how it can be used for RNA velocity analyses.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Programas Informáticos
9.
bioRxiv ; 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32511368

RESUMEN

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.

10.
Nat Biotechnol ; 38(1): 35-38, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873215

RESUMEN

We describe a universal sample multiplexing method for single-cell RNA sequencing in which fixed cells are chemically labeled by attaching identifying DNA oligonucleotides to cellular proteins. Analysis of a 96-plex perturbation experiment revealed changes in cell population structure and transcriptional states that cannot be discerned from bulk measurements, establishing an efficient method for surveying cell populations from large experiments or clinical samples with the depth and resolution of single-cell RNA sequencing.


Asunto(s)
ADN/metabolismo , Oligonucleótidos/metabolismo , Proteínas/metabolismo , RNA-Seq , Análisis de la Célula Individual , Animales , Células HEK293 , Humanos , Ratones
11.
Sci Rep ; 10(1): 21759, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303831

RESUMEN

Scalable, inexpensive, and secure testing for SARS-CoV-2 infection is crucial for control of the novel coronavirus pandemic. Recently developed highly multiplexed sequencing assays (HMSAs) that rely on high-throughput sequencing can, in principle, meet these demands, and present promising alternatives to currently used RT-qPCR-based tests. However, reliable analysis, interpretation, and clinical use of HMSAs requires overcoming several computational, statistical and engineering challenges. Using recently acquired experimental data, we present and validate a computational workflow based on kallisto and bustools, that utilizes robust statistical methods and fast, memory efficient algorithms, to quickly, accurately and reliably process high-throughput sequencing data. We show that our workflow is effective at processing data from all recently proposed SARS-CoV-2 sequencing based diagnostic tests, and is generally applicable to any diagnostic HMSA.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , Técnicas de Diagnóstico Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos
12.
Sci Rep ; 9(1): 12385, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455877

RESUMEN

The poseidon syringe pump and microscope system is an open source alternative to commercial systems. It costs less than $400 and can be assembled in under an hour using the instructions and source files available at https://pachterlab.github.io/poseidon . We describe the poseidon system and use it to illustrate design principles that can facilitate the adoption and development of open source bioinstruments. The principles are functionality, robustness, safety, simplicity, modularity, benchmarking, and documentation.

14.
Science ; 349(6250): 860-4, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26184915

RESUMEN

Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.


Asunto(s)
Microbiota/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Ácido Salicílico/metabolismo , Microbiología del Suelo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Microbiota/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Ácido Salicílico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA