Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Bioanal Chem ; 416(6): 1311-1320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216759

RESUMEN

FTIR spectral identification is today's gold standard analytical procedure for plastic pollution material characterization. High-throughput FTIR techniques have been advanced for small microplastics (10-500 µm) but less so for large microplastics (500-5 mm) and macroplastics (> 5 mm). These larger plastics are typically analyzed using ATR, which is highly manual and can sometimes destroy particles of interest. Furthermore, spectral libraries are often inadequate due to the limited variety of reference materials and spectral collection modes, resulting from expensive spectral data collection. We advance a new high-throughput technique to remedy these problems using FTIR microplate readers for measuring large particles (> 500 µm). We created a new reference database of over 6000 spectra for transmission, ATR, and reflection spectral collection modes with over 600 plastic, organic, and mineral reference materials relevant to plastic pollution research. We also streamline future analysis in microplate readers by creating a new particle holder for transmission measurements using off-the-shelf parts and fabricating a nonplastic 96-well microplate for storing particles. We determined that particles should be presented to microplate readers as thin as possible due to thick particles causing poor-quality spectra and identifications. We validated the new database using Open Specy and demonstrated that additional transmission and reflection spectra reference data were needed in spectral libraries.

2.
Eur J Neurosci ; 54(12): 8318-8335, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33609299

RESUMEN

Learning to navigate uncharted terrain is a key cognitive ability that emerges as a deeply embodied process, with eye movements and locomotion proving most useful to sample the environment. We studied healthy human participants during active spatial learning of room-scale virtual reality (VR) mazes. In the invisible maze task, participants wearing a wireless electroencephalography (EEG) headset were free to explore their surroundings, only given the objective to build and foster a mental spatial representation of their environment. Spatial uncertainty was resolved by touching otherwise invisible walls that were briefly rendered visible inside VR, similar to finding your way in the dark. We showcase the capabilities of mobile brain/body imaging using VR, demonstrating several analysis approaches based on general linear models (GLMs) to reveal behavior-dependent brain dynamics. Confirming spatial learning via drawn sketch maps, we employed motion capture to image spatial exploration behavior describing a shift from initial exploration to subsequent exploitation of the mental representation. Using independent component analysis, the current work specifically targeted oscillations in response to wall touches reflecting isolated spatial learning events arising in deep posterior EEG sources located in the retrosplenial complex. Single-trial regression identified significant modulation of alpha oscillations by the immediate, egocentric, exploration behavior. When encountering novel walls, as well as with increasing walking distance between subsequent touches when encountering novel walls, alpha power decreased. We conclude that these oscillations play a prominent role during egocentric evidencing of allocentric spatial hypotheses.


Asunto(s)
Navegación Espacial , Realidad Virtual , Cognición , Electroencefalografía , Humanos , Aprendizaje , Percepción Espacial/fisiología , Conducta Espacial/fisiología , Navegación Espacial/fisiología
3.
Eur J Neurosci ; 54(12): 8283-8307, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33497490

RESUMEN

Spatial navigation is one of the fundamental cognitive functions central to survival in most animals. Studies in humans investigating the neural foundations of spatial navigation traditionally use stationary, desk-top protocols revealing the hippocampus, parahippocampal place area (PPA), and retrosplenial complex to be involved in navigation. However, brain dynamics, while freely navigating the real world remain poorly understood. To address this issue, we developed a novel paradigm, the AudioMaze, in which participants freely explore a room-sized virtual maze, while EEG is recorded synchronized to motion capture. Participants (n = 16) were blindfolded and explored different mazes, each in three successive trials, using their right hand as a probe to "feel" for virtual maze walls. When their hand "neared" a virtual wall, they received directional noise feedback. Evidence for spatial learning include shortening of time spent and an increase of movement velocity as the same maze was repeatedly explored. Theta-band EEG power in or near the right lingual gyrus, the posterior portion of the PPA, decreased across trials, potentially reflecting the spatial learning. Effective connectivity analysis revealed directed information flow from the lingual gyrus to the midcingulate cortex, which may indicate an updating process that integrates spatial information with future action. To conclude, we found behavioral evidence of navigational learning in a sparse-AR environment, and a neural correlate of navigational learning was found near the lingual gyrus.


Asunto(s)
Realidad Aumentada , Navegación Espacial , Electroencefalografía/métodos , Hipocampo , Humanos , Imagen por Resonancia Magnética
4.
Eur J Neurosci ; 54(12): 8256-8282, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33738880

RESUMEN

Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion-constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark-based navigation in actively behaving young adults, solving a Y-maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state-of-the-art brain imaging literature of landmark-based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo-spatial processing and coding, we observed an alpha-power desynchronization while participants gathered visual information. We also hypothesized behavior-dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time-frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high-density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark-based navigation.


Asunto(s)
Ondas Encefálicas , Navegación Espacial , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Adulto Joven
5.
Artículo en Inglés | MEDLINE | ID: mdl-37624723

RESUMEN

OBJECTIVE: Mixed-Reality (XR) technologies promise a user experience (UX) that rivals the interactive experience with the real-world. The key facilitators in the design of such a natural UX are that the interaction has zero lag and that users experience no excess mental load. This is difficult to achieve due to technical constraints such as motion-to-photon latency as well as false-positives during gesture-based interaction.

6.
Curr Top Behav Neurosci ; 65: 103-129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512288

RESUMEN

Immersive virtual reality (VR) allows its users to experience physical space in a non-physical world. It has developed into a powerful research tool to investigate the neural basis of human spatial navigation as an embodied experience. The task of wayfinding can be carried out by using a wide range of strategies, leading to the recruitment of various sensory modalities and brain areas in real-life scenarios. While traditional desktop-based VR setups primarily focus on vision-based navigation, immersive VR setups, especially mobile variants, can efficiently account for motor processes that constitute locomotion in the physical world, such as head-turning and walking. When used in combination with mobile neuroimaging methods, immersive VR affords a natural mode of locomotion and high immersion in experimental settings, designing an embodied spatial experience. This in turn facilitates ecologically valid investigation of the neural underpinnings of spatial navigation.


Asunto(s)
Navegación Espacial , Realidad Virtual , Humanos , Encéfalo/diagnóstico por imagen
7.
J Neural Eng ; 19(3)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35462356

RESUMEN

Objective. Neural interfaces hold significant promise to implicitly track user experience. Their application in virtual and augmented reality (VR/AR) simulations is especially favorable as it allows user assessment without breaking the immersive experience. In VR, designing immersion is one key challenge. Subjective questionnaires are the established metrics to assess the effectiveness of immersive VR simulations. However, administering such questionnaires requires breaking the immersive experience they are supposed to assess.Approach. We present a complimentary metric based on a event-related potentials. For the metric to be robust, the neural signal employed must be reliable. Hence, it is beneficial to target the neural signal's cortical origin directly, efficiently separating signal from noise. To test this new complementary metric, we designed a reach-to-tap paradigm in VR to probe electroencephalography (EEG) and movement adaptation to visuo-haptic glitches. Our working hypothesis was, that these glitches, or violations of the predicted action outcome, may indicate a disrupted user experience.Main results. Using prediction error negativity features, we classified VR glitches with 77% accuracy. We localized the EEG sources driving the classification and found midline cingulate EEG sources and a distributed network of parieto-occipital EEG sources to enable the classification success.Significance. Prediction error signatures from these sources reflect violations of user's predictions during interaction with AR/VR, promising a robust and targeted marker for adaptive user interfaces.


Asunto(s)
Realidad Aumentada , Realidad Virtual , Electroencefalografía , Potenciales Evocados , Movimiento , Interfaz Usuario-Computador
8.
Sci Rep ; 11(1): 18186, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521939

RESUMEN

The retrosplenial complex (RSC) plays a crucial role in spatial orientation by computing heading direction and translating between distinct spatial reference frames based on multi-sensory information. While invasive studies allow investigating heading computation in moving animals, established non-invasive analyses of human brain dynamics are restricted to stationary setups. To investigate the role of the RSC in heading computation of actively moving humans, we used a Mobile Brain/Body Imaging approach synchronizing electroencephalography with motion capture and virtual reality. Data from physically rotating participants were contrasted with rotations based only on visual flow. During physical rotation, varying rotation velocities were accompanied by pronounced wide frequency band synchronization in RSC, the parietal and occipital cortices. In contrast, the visual flow rotation condition was associated with pronounced alpha band desynchronization, replicating previous findings in desktop navigation studies, and notably absent during physical rotation. These results suggest an involvement of the human RSC in heading computation based on visual, vestibular, and proprioceptive input and implicate revisiting traditional findings of alpha desynchronization in areas of the navigation network during spatial orientation in movement-restricted participants.


Asunto(s)
Giro del Cíngulo/fisiología , Movimientos de la Cabeza , Lóbulo Occipital/fisiología , Orientación Espacial , Lóbulo Parietal/fisiología , Adulto , Ritmo alfa , Femenino , Humanos , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA