Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Thorax ; 78(12): 1188-1196, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37798114

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is a heterogeneous disease with frequently associated interstitial lung disease (SSc-ILD). We aimed to determine the prognostic potential of phenotyping patients with SSc and SSc-ILD by inflammation and to describe disease trajectories stratified by inflammation and immunosuppressive treatment. METHODS: Patients from the European Scleroderma Trials and Research (EUSTAR) group cohort were allocated to persistent inflammatory, intermediate and non-inflammatory phenotypes if C-reactive protein (CRP) levels were ≥5 mg/L at ≥80%, at 20-80% and at <20% of visits, respectively. Cox regression models were used to analyse mortality risk and mixed effect models to describe trajectories of FVC and diffusing capacity for carbon monoxide (DLCO) %-predicted stratified by inflammation and immunosuppressive treatment. RESULTS: 2971 patients with SSc and 1171 patients with SSc-ILD had at least three CRP measurements available. Patients with SSc-ILD with a persistent inflammatory phenotype had a 6.7 times higher risk of mortality within 5 years compared with those with a persistent non-inflammatory phenotype (95% CI 3 to 15). In the inflammatory phenotype, FVC %-predicted was declining without (-1.11 (95% CI -2.14 to -0.08)/year), but stable with immunosuppressive treatment (-0.00 (95% CI -0.92 to 0.92)/year). In the non-inflammatory phenotype, patients with and without immunosuppressive treatment had a significant decline in FVC %-predicted, which was more pronounced in those with immunosuppressive treatment (-1.26 (95% CI -1.87 to -0.64) and -0.84 (95% CI -1.35 to -0.33)/year, respectively). CONCLUSIONS: Phenotyping by persistent inflammation provides valuable prognostic information, independent of demographics, disease duration, cutaneous subtype, treatment and SSc-ILD severity. The findings from this study support early immunosuppressive treatment in patients with SSc-ILD with persistent inflammation.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Pulmón , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/etiología , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/inducido químicamente , Inmunosupresores/uso terapéutico , Inflamación/inducido químicamente
2.
Respiration ; 102(2): 120-133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36566741

RESUMEN

BACKGROUND: Lung function impairment persists in some patients for months after acute coronavirus disease 2019 (COVID-19). Long-term lung function, radiological features, and their association remain to be clarified. OBJECTIVES: We aimed to prospectively investigate lung function and radiological abnormalities over 12 months after severe and non-severe COVID-19. METHODS: 584 patients were included in the Swiss COVID-19 lung study. We assessed lung function at 3, 6, and 12 months after acute COVID-19 and compared chest computed tomography (CT) imaging to lung functional abnormalities. RESULTS: At 12 months, diffusion capacity for carbon monoxide (DLCOcorr) was lower after severe COVID-19 compared to non-severe COVID-19 (74.9% vs. 85.2% predicted, p < 0.001). Similarly, minimal oxygen saturation on 6-min walk test and total lung capacity were lower after severe COVID-19 (89.6% vs. 92.2%, p = 0.004, respectively, 88.2% vs. 95.1% predicted, p = 0.011). The difference for forced vital capacity (91.6% vs. 96.3% predicted, p = 0.082) was not statistically significant. Between 3 and 12 months, lung function improved in both groups and differences in DLCO between non-severe and severe COVID-19 patients decreased. In patients with chest CT scans at 12 months, we observed a correlation between radiological abnormalities and reduced lung function. While the overall extent of radiological abnormalities diminished over time, the frequency of mosaic attenuation and curvilinear patterns increased. CONCLUSIONS: In this prospective cohort study, patients who had severe COVID-19 had diminished lung function over the first year compared to those after non-severe COVID-19, albeit with a greater extent of recovery in the severe disease group.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Humanos , Estudios Prospectivos , Suiza/epidemiología , Pulmón/diagnóstico por imagen
3.
Adv Exp Med Biol ; 1413: 191-211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195532

RESUMEN

Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.


Asunto(s)
Pulmón , Alveolos Pulmonares , Matriz Extracelular , Dispositivos Laboratorio en un Chip
4.
Radiology ; 304(1): 195-204, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35380498

RESUMEN

Background Evidence regarding short-term effects of electronic nicotine delivery systems (ENDS) and tobacco smoke on lung ventilation and perfusion is limited. Purpose To examine the immediate effect of ENDS exposure and tobacco smoke on lung ventilation and perfusion by functional MRI and lung function tests. Materials and Methods This prospective observational pilot study was conducted from November 2019 to September 2021 (substudy of randomized controlled trial NCT03589989). Included were 44 healthy adult participants (10 control participants, nine former tobacco smokers, 13 ENDS users, and 12 active tobacco smokers; mean age, 41 years ± 12 [SD]; 28 men) who underwent noncontrast-enhanced matrix pencil MRI and lung function tests before and immediately after the exposure to ENDS products or tobacco smoke. Baseline measurements were acquired after 2 hours of substance abstinence. Postexposure measurements were performed immediately after the exposure. MRI showed semiquantitative measured impairment of lung perfusion (RQ) and fractional ventilation (RFV) impairment as percentages of affected lung volume. Lung clearance index (LCI) was assessed by nitrogen multiple-breath washout to capture ventilation inhomogeneity and spirometry to assess airflow limitation. Absolute differences were calculated with paired Wilcoxon signed-rank test and differences between groups with unpaired Mann-Whitney test. Healthy control participants underwent two consecutive MRI measurements to assess MRI reproducibility. Results MRI was performed and lung function measurement was acquired in tobacco smokers and ENDS users before and after exposure. MRI showed a decrease of perfusion after exposure (RQ, 8.6% [IQR, 7.2%-10.0%] to 9.1% [IQR, 7.8%-10.7%]; P = .03) and no systematic change in RFV (P = .31) among tobacco smokers. Perfusion increased in participants who used ENDS after exposure (RQ, 9.7% [IQR, 7.1%-10.9%] to 9.0% [IQR, 6.9%-10.0%]; P = .01). RFV did not change (P = .38). Only in tobacco smokers was LCI elevated after smoking (P = .02). Spirometry indexes did not change in any participants. Conclusion MRI showed a decrease of lung perfusion after exposure to tobacco smoke and an increase of lung perfusion after use of electronic nicotine delivery systems. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Kligerman in this issue.


Asunto(s)
Contaminación por Humo de Tabaco , Vapeo , Adulto , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Perfusión , Estudios Prospectivos , Reproducibilidad de los Resultados , Fumar/efectos adversos , Vapeo/efectos adversos
5.
Eur Respir J ; 59(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34824054

RESUMEN

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Asunto(s)
Antiasmáticos , Asma , Corticoesteroides/uso terapéutico , Antiasmáticos/uso terapéutico , Asma/genética , Carnitina/uso terapéutico , Estudios Transversales , Humanos , Índice de Severidad de la Enfermedad , Miembro 5 de la Familia 22 de Transportadores de Solutos
6.
Eur Respir J ; 59(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34737220

RESUMEN

RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-ß and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.


Asunto(s)
Asma , Calidad de Vida , Proteínas Sanguíneas , Humanos , Inflamación/metabolismo , Proteómica , Índice de Severidad de la Enfermedad , Esteroides/uso terapéutico
7.
Respir Res ; 23(1): 149, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676709

RESUMEN

BACKGROUND: Dehydroepiandrosterone (DHEA) is a precursor sex hormone with antifibrotic properties. The aims of this study were to investigate antifibrotic mechanisms of DHEA, and to determine the relationship between DHEA-sulfate (DHEAS) plasma levels, disease severity and survival in patients with fibrotic interstitial lung diseases (ILDs). METHODS: Human precision cut lung slices (PCLS) and normal human lung fibroblasts were treated with DHEA and/or transforming growth factor (TGF)-ß1 before analysis of pro-fibrotic genes and signal proteins. Cell proliferation, cytotoxicity, cell cycle and glucose-6-phosphate dehydrogenase (G6PD) activity were assessed. DHEAS plasma levels were correlated with pulmonary function, the composite physiologic index (CPI), and time to death or lung transplantation in a derivation cohort of 31 men with idiopathic pulmonary fibrosis (IPF) and in an independent validation cohort of 238 men and women with fibrotic ILDs. RESULTS: DHEA decreased the expression of pro-fibrotic markers in-vitro and ex-vivo. There was no cytotoxic effect for the applied concentrations, but DHEA interfered in proliferation by modulating the cell cycle through reduction of G6PD activity. In men with IPF (derivation cohort) DHEAS plasma levels in the lowest quartile were associated with poor lung function and higher CPI (adjusted OR 1.15 [95% CI 1.03-1.38], p = 0.04), which was confirmed in the fibrotic ILD validation cohort (adjusted OR 1.03 [95% CI 1.00-1.06], p = 0.01). In both cohorts the risk of early mortality was higher in patients with low DHEAS levels, after accounting for potential confounding by age in men with IPF (HR 3.84, 95% CI 1.25-11.7, p = 0.02), and for age, sex, IPF diagnosis and prednisone treatment in men and women with fibrotic ILDs (HR 3.17, 95% CI 1.35-7.44, p = 0.008). CONCLUSIONS: DHEA reduces lung fibrosis and cell proliferation by inducing cell cycle arrest and inhibition of G6PD activity. The association between low DHEAS levels and disease severity suggests a potential prognostic and therapeutic role of DHEAS in fibrotic ILD.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Sulfato de Deshidroepiandrosterona , Femenino , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Pulmón , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/patología , Masculino
8.
Am J Respir Crit Care Med ; 203(1): 37-53, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32667261

RESUMEN

Rationale: New approaches are needed to guide personalized treatment of asthma.Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE2 pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE2 metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD2 metabolite 2,3-dinor-11ß-PGF2α. High concentrations of LTE4 and PGD2 metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOPRED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers.Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.Clinical trial registered with www.clinicaltrials.gov (NCT01976767).


Asunto(s)
Asma/metabolismo , Biomarcadores/orina , Inflamación/metabolismo , Leucotrieno E4/metabolismo , Leucotrieno E4/orina , Prostaglandinas/metabolismo , Prostaglandinas/orina , Adulto , Asma/fisiopatología , Femenino , Humanos , Inflamación/fisiopatología , Masculino , Persona de Mediana Edad
9.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33419891

RESUMEN

BACKGROUND: The infectious coronavirus disease 2019 (COVID-19) pandemic is an ongoing global healthcare challenge. Up to one-third of hospitalised patients develop severe pulmonary complications and acute respiratory distress syndrome. Pulmonary outcomes following COVID-19 are unknown. METHODS: The Swiss COVID-19 lung study is a multicentre prospective cohort investigating pulmonary sequelae of COVID-19. We report on initial follow-up 4 months after mild/moderate or severe/critical COVID-19 according to the World Health Organization severity classification. RESULTS: 113 COVID-19 survivors were included (mild/moderate n=47, severe/critical n=66). We confirmed several comorbidities as risk factors for severe/critical disease. Severe/critical disease was associated with impaired pulmonary function, i.e. diffusing capacity of the lung for carbon monoxide (D LCO) % predicted, reduced 6-min walk distance (6MWD) and exercise-induced oxygen desaturation. After adjustment for potential confounding by age, sex and body mass index (BMI), patients after severe/critical COVID-19 had a D LCO 20.9% pred (95% CI 12.4-29.4% pred, p=0.01) lower at follow-up. D LCO % pred was the strongest independent factor associated with previous severe/critical disease when age, sex, BMI, 6MWD and minimal peripheral oxygen saturation at exercise were included in the multivariable model (adjusted odds ratio per 10% predicted 0.59, 95% CI 0. 37-0.87; p=0.01). Mosaic hypoattenuation on chest computed tomography at follow-up was significantly associated with previous severe/critical COVID-19 including adjustment for age and sex (adjusted OR 11.7, 95% CI 1.7-239; p=0.03). CONCLUSIONS: 4 months after severe acute respiratory syndrome coronavirus 2 infection, severe/critical COVID-19 was associated with significant functional and radiological abnormalities, potentially due to small-airway and lung parenchymal disease. A systematic follow-up for survivors needs to be evaluated to optimise care for patients recovering from COVID-19.


Asunto(s)
COVID-19 , Humanos , Pulmón/diagnóstico por imagen , Estudios Prospectivos , Pruebas de Función Respiratoria , SARS-CoV-2 , Suiza/epidemiología
10.
Respir Res ; 22(1): 120, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892724

RESUMEN

BACKGROUND: The differential diagnosis fibrotic hypersensitivity pneumonitis (HP) versus idiopathic pulmonary fibrosis (IPF) is important but challenging. Recent diagnostic guidelines for HP emphasize including multidisciplinary discussion (MDD) in the diagnostic process, however MDD is not comprehensively available. We aimed to establish the diagnostic accuracy and prognostic validity of a previously proposed HP diagnostic algorithm that foregoes MDD. METHODS: We tested the algorithm in patients with an MDD diagnosis of fibrotic HP or IPF (case control study) and determined diagnostic test performances for diagnostic confidences of ≥ 90% and ≥ 70%. Prognostic validity was established using Cox proportional hazards models. RESULTS: Thirty-one patients with fibrotic HP and 50 IPF patients were included. The algorithm-derived ≥ 90% confidence level for HP had high specificity (0.94, 95% confidence interval [CI] 0.83-0.99), but low sensitivity (0.35 [95%CI 0.19-0.55], J-index 0.29). Test performance was improved for the ≥ 70% confidence level (J-index 0.64) with a specificity of 0.90 (95%CI 0.78-0.97), and a sensitivity of 0.74 (95%CI 0.55-0.88). MDD fibrotic HP diagnosis was strongly associated with lower risk of death (adjusted hazard ratio [HR] 0.10 [0.01-0.92], p = 0.04), whereas the algorithm-derived ≥ 70% and ≥ 90% confidence diagnoses were not significantly associated with survival (adjusted HR 0.37 [0.07-1.80], p = 0.22, and adjusted HR 0.41 [0.05-3.25], p = 0.39, respectively). CONCLUSION: The algorithm-derived ≥ 70% diagnostic confidence had satisfactory test performance for MDD-HP diagnosis, with insufficient sensitivity for ≥ 90% confidence. The lowest risk of death in the MDD-derived HP diagnosis validates the reference standard and suggests that a diagnostic algorithm not including MDD, might not replace the latter.


Asunto(s)
Algoritmos , Alveolitis Alérgica Extrínseca/diagnóstico , Antígenos/inmunología , Técnicas de Apoyo para la Decisión , Fibrosis Pulmonar Idiopática/diagnóstico , Pulmón , Alveolitis Alérgica Extrínseca/inmunología , Alveolitis Alérgica Extrínseca/patología , Biopsia , Líquido del Lavado Bronquioalveolar/inmunología , Estudios de Casos y Controles , Humanos , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/patología , Pulmón/diagnóstico por imagen , Pulmón/inmunología , Pulmón/patología , Linfocitosis/inmunología , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X
11.
Respiration ; 100(3): 238-271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33486500

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a severe and often fatal disease. Diagnosis of IPF requires considerable expertise and experience. Since the publication of the international IPF guideline in the year 2011 and the update 2018 several studies and technical advances have occurred, which made a new assessment of the diagnostic process mandatory. The goal of this guideline is to foster early, confident, and effective diagnosis of IPF. The guideline focusses on the typical clinical context of an IPF patient and provides tools to exclude known causes of interstitial lung disease including standardized questionnaires, serologic testing, and cellular analysis of bronchoalveolar lavage. High-resolution computed tomography remains crucial in the diagnostic workup. If it is necessary to obtain specimens for histology, transbronchial lung cryobiopsy is the primary approach, while surgical lung biopsy is reserved for patients who are fit for it and in whom a bronchoscopic diagnosis did not provide the information needed. After all, IPF is a diagnosis of exclusion and multidisciplinary discussion remains the golden standard of diagnosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/diagnóstico , Pulmón , Biopsia/métodos , Lavado Broncoalveolar/métodos , Broncoscopía/métodos , Diagnóstico Diferencial , Humanos , Comunicación Interdisciplinaria , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfermedades Pulmonares Intersticiales/diagnóstico , Selección de Paciente , Pruebas Serológicas/métodos , Tomografía Computarizada por Rayos X/métodos
12.
BMC Med Educ ; 21(1): 123, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33618680

RESUMEN

BACKGROUND: Simulation based medical education is efficient for the acquisition of flexible bronchoscopy navigational skills and the knowledge of the tracheobronchial anatomy. However, bronchoscopy simulator training is not routinely integrated into pneumologic fellowship programs or undergraduate medical education for time and/or cost reasons. Our study compares the effect of self-guided bronchoscopy simulator training versus tutor guided training on the acquisition of navigational skills and knowledge of the bronchial anatomy. METHODS: Third-year undergraduate medical students were randomized to either a tutor- or simulator guided bronchoscopy simulator training focusing on the acquisition of navigational skills and the knowledge of the tracheobronchial anatomy. Every student performed a baseline bronchoscopy followed by a structured bronchoscopy simulator training and finally an assessment bronchoscopy at the end of the training program. Groups were compared by means of a repeated measurement ANOVA and effect sizes calculated as Cohens' d. RESULTS: Fifty-four eligible students participated in the study. Knowledge of the tracheobronchial anatomy significantly increased from pre- to post training (all p < 0.001; all d > 2), navigational skills significantly decreased (all p < 0.005; all d < 1). There were no significant differences between groups. Instruction by the simulator as well as by the tutor was rated as helpful by the students. Twenty-two (84.6%) of the participants of the simulator guided group would have appreciated an additional instruction by a tutor. CONCLUSION: Short-time simulator guided bronchoscopy training improves knowledge of the tracheobronchial anatomy in novice bronchoscopists as much as tutor guided training, but navigational skills seem to worsen in both groups. Further studies assessing transfer to clinical practice are needed to find the optimal teaching method for basic flexible bronchoscopy.


Asunto(s)
Educación de Pregrado en Medicina , Estudiantes de Medicina , Broncoscopía , Competencia Clínica , Humanos , Aprendizaje , Masculino
13.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478018

RESUMEN

Induced pluripotent stem cell secretome (iPSC-CM) mitigate organ injury and help in repair. Macrophages play a critical role in tissue repair and regeneration and can be directed to promote tissue repair by iPSC-CM, although the exact mechanisms are not known. In the current investigative study, we evaluated the possible mechanism by which iPSC-CM regulates the phenotype and secretory pattern of macrophages in vitro. Macrophages were obtained from human peripheral blood mononuclear cells and differentiated to various subpopulations and treated with either iPSC-CM or control media in vitro. Macrophage phenotype was assessed by flow cytometry, gene expression changes by qRT PCR and secretory pattern by multiplex protein analysis. The protein and gene interaction network revealed the involvement of Amyloid precursor protein (APP) and ELAV-like protein 1 (ELAVL-1) both present in the iPSC-CM to play an important role in regulating the macrophage phenotype and their secretory pattern. This exploratory study reveals, in part, the possible mechanism and identifies two potential targets by which iPSC-CM regulate macrophages and help in repair and regeneration.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Macrófagos/efectos de los fármacos , Proteoma , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Medios de Cultivo Condicionados/análisis , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/fisiología , Macrófagos/citología , Macrófagos/fisiología , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteoma/metabolismo , Proteoma/farmacología
14.
Respir Res ; 21(1): 165, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605572

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an incurable disease characterized by progressive lung fibrosis ultimately resulting in respiratory failure and death. Recurrent micro-injuries to the alveolar epithelium and aberrant alveolar wound healing with impaired re-epithelialization define the initial steps of the pathogenic trajectory. Failure of timely alveolar epithelial repair triggers hyper-proliferation of mesenchymal cells accompanied by increased deposition of extracellular matrix into the lung interstitium. METHODS: We previously isolated fibrosis-specific mesenchymal stem cell (MSC)-like cells from lung tissue of patients with interstitial lung diseases. These cells produced factors bearing anti-fibrotic potential and changed their morphology from mesenchymal to epithelial upon culture in an epithelial cell (EC)-specific growth medium. Here, we set out to molecularly characterize these MSC-like cell-derived ECs using global gene expression profiling by RNA-sequencing. Moreover, we aimed at characterizing disease-specific differences by comparing the transcriptomes of ECs from IPF and non-IPF sources. RESULTS: Our results suggest that differentially expressed genes are enriched for factors related to fibrosis, hypoxia, bacterial colonization and metabolism, thus reflecting many of the hallmark characteristics of pulmonary fibrosis. IPF-ECs showed enrichment of both pro- and anti-fibrotic genes, consistent with the notion of adaptive, compensatory regulation. CONCLUSIONS: Our findings support the hypothesis of a functional impairment of IPF-ECs, which could possibly explain the poor clinical outcome of IPF that roughly compares to those of advanced-stage cancers. Our study provides a valuable resource for downstream mechanistic investigation and the quest for novel therapeutic IPF targets.


Asunto(s)
Células Epiteliales/patología , Perfilación de la Expresión Génica , Fibrosis Pulmonar Idiopática/genética , Transcriptoma , Adulto , Anciano , Células Cultivadas , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/patología , Enfermedades Pulmonares Intersticiales , Masculino , Células Madre Mesenquimatosas , Persona de Mediana Edad , ARN/biosíntesis , ARN/genética , Transducción de Señal
15.
Respir Res ; 21(1): 25, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941499

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease without a cure and new drug strategies are urgently needed. Differences in behavior between diseased and healthy cells are well known and drug response can be different between cells isolated from IPF patients and controls. The macrolide Azithromycin (AZT) has anti-inflammatory and immunomodulatory properties. Recently anti-fibrotic effects have been described. However, the anti-fibrotic effects on primary IPF-fibroblasts (FB) directly compared to control-FB are unknown. We hypothesized that IPF-FB react differently to AZT in terms of anti-fibrotic effects. METHODS: Primary normal human lung and IPF-FB were exposed to TGF-ß (5 ng/ml), Azithromycin (50 µM) alone or in combination prior to gene expression analysis. Pro-collagen Iα1 secretion was assessed by ELISA and protein expression by western blot (αSMA, Fibronectin, ATP6V1B2, LC3 AB (II/I), p62, Bcl-xL). Microarray analysis was performed to screen involved genes and pathways after Azithromycin treatment in control-FB. Apoptosis and intraluminal lysosomal pH were analyzed by flow cytometry. RESULTS: AZT significantly reduced collagen secretion in TGF-ß treated IPF-FB compared to TGF-ß treatment alone, but not in control-FB. Pro-fibrotic gene expression was similarly reduced after AZT treatment in IPF and control-FB. P62 and LC3II/I western blot revealed impaired autophagic flux after AZT in both control and IPF-FB with significant increase of LC3II/I after AZT in control and IPF-FB, indicating enhanced autophagy inhibition. Early apoptosis was significantly higher in TGF-ß treated IPF-FB compared to controls after AZT. Microarray analysis of control-FB treated with AZT revealed impaired lysosomal pathways. The ATPase and lysosomal pH regulator ATP6V0D2 was significantly less increased after additional AZT in IPF-FB compared to controls. Lysosomal function was impaired in both IPF and control FB, but pH was significantly more increased in TGF-ß treated IPF-FB. CONCLUSION: We report different treatment responses after AZT with enhanced anti-fibrotic and pro-apoptotic effects in IPF compared to control-FB. Possibly impaired lysosomal function contributes towards these effects. In summary, different baseline cell phenotype and behavior of IPF and control cells contribute to enhanced anti-fibrotic and pro-apoptotic effects in IPF-FB after AZT treatment and strengthen its role as a new potential anti-fibrotic compound, that should further be evaluated in clinical studies.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Azitromicina/farmacología , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática , Pulmón/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Apoptosis/fisiología , Azitromicina/uso terapéutico , Células Cultivadas , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Factor de Crecimiento Transformador beta/farmacología
16.
Respir Res ; 21(1): 29, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992294

RESUMEN

After publication of our article [1], we have been notified that an extra alpha symbol (α) was mistakenly added at the beginning of the title.

17.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531975

RESUMEN

Current oxygen delivery modes lack monitoring and can be cumbersome for patients with chronic respiratory diseases. Integrating a pulse oximeter and nasal oxygen cannulas into eyeglasses would reduce the burden of current solutions. An ear pulse oximeter (OxyFrame) was evaluated on 16 healthy volunteers and 20 hypoxemic patients with chronic respiratory diseases undergoing a prespecified protocol simulating daily activities. Correlation, error, and accuracy root mean square error (ARMS) were calculated to compare SpO2 measured by OxyFrame, a standard pulse oximeter (MASIMO), and arterial blood gas analysis (aBGA). SpO2 measured by OxyFrame and MASIMO correlated strongly in volunteers, with low error and high accuracy (r = 0.85, error = 0.2 ± 2.9%, ARMS = 2.88%). Performances were similar in patients (r = 0.87, error 0 ± 2.5%, ARMS = 2.49% compared with MASIMO; and r = 0.93, error = 0.4 ± 1.9%, ARMS = 1.94% compared with aBGA). However, the percentage of rejected measurements was high (volunteers 77.2%, patients 46.9%). The OxyFrame cavum conchae pulse oximeter was successfully evaluated, and demonstrated accurate SpO2 measurements, compliant with ISO 80601-2-61:2017. Several reasons for the high rejection rate were identified, and potential solutions were proposed, which might be valuable for optimization of the sensor hardware.


Asunto(s)
Análisis de los Gases de la Sangre/instrumentación , Oximetría/instrumentación , Oxígeno/sangre , Anciano , Anteojos , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
J Allergy Clin Immunol ; 143(5): 1811-1820.e7, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30529449

RESUMEN

BACKGROUND: Severe asthma is a heterogeneous condition, as shown by independent cluster analyses based on demographic, clinical, and inflammatory characteristics. A next step is to identify molecularly driven phenotypes using "omics" technologies. Molecular fingerprints of exhaled breath are associated with inflammation and can qualify as noninvasive assessment of severe asthma phenotypes. OBJECTIVES: We aimed (1) to identify severe asthma phenotypes using exhaled metabolomic fingerprints obtained from a composite of electronic noses (eNoses) and (2) to assess the stability of eNose-derived phenotypes in relation to within-patient clinical and inflammatory changes. METHODS: In this longitudinal multicenter study exhaled breath samples were taken from an unselected subset of adults with severe asthma from the U-BIOPRED cohort. Exhaled metabolites were analyzed centrally by using an assembly of eNoses. Unsupervised Ward clustering enhanced by similarity profile analysis together with K-means clustering was performed. For internal validation, partitioning around medoids and topological data analysis were applied. Samples at 12 to 18 months of prospective follow-up were used to assess longitudinal within-patient stability. RESULTS: Data were available for 78 subjects (age, 55 years [interquartile range, 45-64 years]; 41% male). Three eNose-driven clusters (n = 26/33/19) were revealed, showing differences in circulating eosinophil (P = .045) and neutrophil (P = .017) percentages and ratios of patients using oral corticosteroids (P = .035). Longitudinal within-patient cluster stability was associated with changes in sputum eosinophil percentages (P = .045). CONCLUSIONS: We have identified and followed up exhaled molecular phenotypes of severe asthma, which were associated with changing inflammatory profile and oral steroid use. This suggests that breath analysis can contribute to the management of severe asthma.


Asunto(s)
Asma/diagnóstico , Nariz Electrónica , Eosinófilos/patología , Inflamación/diagnóstico , Neutrófilos/patología , Adulto , Pruebas Respiratorias , Análisis por Conglomerados , Estudios de Cohortes , Progresión de la Enfermedad , Espiración , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Índice de Severidad de la Enfermedad
19.
Stem Cells ; 36(4): 616-625, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29226550

RESUMEN

Induced pluripotent stem cells (iPSCs) have been reported to alleviate organ injury, although the mechanisms of action remain unclear and administration of intact cells faces many limitations. We hypothesized that cell-free conditioned media (CM) containing the secretome of iPSCs possess antioxidative constituents that can alleviate pulmonary oxidant stress damage. We derived iPSCs from human dermal fibroblasts and harvested the CM. Addition of iPSC CM to cultured human alveolar type-1 epithelial cells mitigated hyperoxia-induced depletion of endogenous total antioxidant capacity while tracheal instillation of iPSC CM into adult rat lungs enhanced hyperoxia-induced increase in TAC. In both the in vitro and in vivo models, iPSC CM ameliorated oxidative damage to DNA, lipid, and protein, and activated the nuclear factor (erythroid 2)-related factor 2 (Nrf2) network of endogenous antioxidant proteins. Compared with control fibroblast-conditioned or cell-free media, iPSC CM is highly enriched with αKlotho at a concentration up to more than 10-fold of that in normal serum. αKlotho is an essential antioxidative cell maintenance and protective factor and an activator of the Nrf2 network. Immunodepletion of αKlotho reduced iPSC CM-mediated cytoprotection by ∼50%. Thus, the abundant αKlotho content significantly contributes to iPSC-mediated antioxidation and cytoprotection. Results uncover a major mechanism of iPSC action, suggest a fundamental role of αKlotho in iPSC maintenance, and support the translational potential of airway delivery of cell-free iPSC secretome for protection against lung injury. The targeted cell-free secretome-based approach may also be applicable to the amelioration of injury in other organs. Stem Cells 2018;36:616-625.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Antioxidantes/metabolismo , Glucuronidasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/patología , Animales , Humanos , Células Madre Pluripotentes Inducidas/patología , Proteínas Klotho , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley
20.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L157-L164, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971974

RESUMEN

In vitro and animal studies revealed micro-RNAs (miRs) to be involved in modulation of hypoxia-induced pulmonary hypertension (HPH). However, knowledge of circulating miRs in humans in the context of HPH is very limited. Since symptoms of HPH are nonspecific and noninvasive diagnostic parameters do not exist, a disease-specific and hypoxemia-independent biomarker indicating HPH would be of clinical value. To examine whether plasma miR levels correlate with hypoxia-induced increase in pulmonary artery pressures, plasma miRs were assessed in a model of hypoxia-related pulmonary hypertension in humans exposed to extreme altitude. Forty healthy volunteers were repetitively examined during a high-altitude expedition up to an altitude of 7,050 m. Plasma levels of miR-17, -21, and -190 were measured by real-time quantitative PCR and correlated with systolic pulmonary artery pressure (SPAP), which was assessed by echocardiography. A significant altitude-dependent increase in circulating miR expression was found (all P values < 0.0001). Compared with baseline at 500 m, miR-17 changed by 4.72 ± 0.57-fold, miR-21 changed by 1.91 ± 0.33-fold, and miR-190 changed by 3.61 ± 0.54-fold at 7,050 m (means ± SD). Even after adjusting for hypoxemia, miR-17 and miR-190 were found to be independently correlated with increased SPAP. Progressive hypobaric hypoxia significantly affects levels of circulating miR-17, -21, and -190. Independently from the extent of hypoxemia, miR-17 and -190 significantly correlate with increased SPAP. These novel findings provide evidence for an epigenetic modulation of hypoxia-induced increase in pulmonary artery pressures by miR-17 and -190 and suggest the potential value of these miRs as biomarkers for HPH.


Asunto(s)
Mal de Altura/complicaciones , Hipertensión Pulmonar/sangre , Hipoxia/fisiopatología , MicroARNs/genética , Arteria Pulmonar/patología , Adolescente , Adulto , Anciano , Altitud , Femenino , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Arteria Pulmonar/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA