Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(38): e2212949120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695908

RESUMEN

Fluorescent reporters of cardiac electrophysiology provide valuable information on heart cell and tissue function. However, motion artifacts caused by cardiac muscle contraction interfere with accurate measurement of fluorescence signals. Although drugs such as blebbistatin can be applied to stop cardiac tissue from contracting by uncoupling calcium-contraction, their usage prevents the study of excitation-contraction coupling and, as we show, impacts cellular structure. We therefore developed a robust method to remove motion computationally from images of contracting cardiac muscle and to map fluorescent reporters of cardiac electrophysiological activity onto images of undeformed tissue. When validated on cardiomyocytes derived from human induced pluripotent stem cells (iPSCs), in both monolayers and engineered tissues, the method enabled efficient and robust reduction of motion artifact. As with pharmacologic approaches using blebbistatin for motion removal, our algorithm improved the accuracy of optical mapping, as demonstrated by spatial maps of calcium transient decay. However, unlike pharmacologic motion removal, our computational approach allowed direct analysis of calcium-contraction coupling. Results revealed calcium-contraction coupling to be more uniform across cells within engineered tissues than across cells in monolayer culture. The algorithm shows promise as a robust and accurate tool for optical mapping studies of excitation-contraction coupling in heart tissue.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Artefactos , Calcio , Programas Informáticos , Calcio de la Dieta , Colorantes
2.
Nano Lett ; 24(1): 229-237, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38146928

RESUMEN

Rapid and accurate quantification of low-abundance protein biomarkers in biofluids can transform the diagnosis of a range of pathologies, including infectious diseases. Here, we harness ultrabright plasmonic fluors as "digital nanolabels" and demonstrate the detection and quantification of subfemtomolar concentrations of human IL-6 and SARS-CoV-2 alpha and variant proteins in clinical nasopharyngeal swab and saliva samples from COVID-19 patients. The resulting digital plasmonic fluor-linked immunosorbent assay (digital p-FLISA) enables detection of SARS-CoV-2 nucleocapsid protein, both in solution and in live virions. Digital p-FLISA outperforms the "gold standard" enzyme-linked immunosorbent assay (ELISA), having a nearly 7000-fold lower limit-of-detection, and outperforms a commercial antigen test, having over 5000-fold improvement in analytical sensitivity. Detection and quantification of very low concentrations of target proteins holds potential for early detection of pathological conditions, treatment monitoring, and personalized medicine.


Asunto(s)
COVID-19 , Humanos , Ensayo de Inmunoadsorción Enzimática , COVID-19/diagnóstico , Fluoroinmunoensayo , SARS-CoV-2 , Biomarcadores , Sensibilidad y Especificidad
3.
J Endovasc Ther ; : 15266028241231513, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38357736

RESUMEN

CLINICAL IMPACT: The study establishes a rapid, technically straightforward, and reproducible porcine large animal model for acute iliocaval deep vein thrombosis (DVT). The procedure can be performed with basic endovascular skillsets. With its procedural efficiency and consistency, the platform is promising for comparative in vivo testing of venous thrombectomy devices in a living host, and for future verification and validation studies to determine efficacy of novel thrombectomy devices relative to predicates.

4.
Biophys J ; 122(1): 43-53, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451545

RESUMEN

Cells translate mechanical cues from the extracellular matrix (ECM) into signaling that can affect the nucleus. One pathway by which such nuclear mechanotransduction occurs is a signaling axis that begins with integrin-ECM bonds and continues through a cascade of chemical reactions and structural changes that lead to nuclear translocation of YAP/TAZ. This signaling axis is self-reinforcing, with stiff ECM promoting integrin binding and thus facilitating polymerization and tension in the cytoskeletal contractile apparatus, which can compress nuclei, open nuclear pore channels, and enhance nuclear accumulation of YAP/TAZ. We previously developed a computational model of this mechanosensing axis for the linear elastic ECM by assuming that there is a linear relationship between the nucleocytoplasmic ratio of YAP/TAZ and nuclear flattening. Here, we extended our previous model to more general ECM behaviors (e.g., viscosity, viscoelasticity, and viscoplasticity) and included detailed YAP/TAZ translocation dynamics based on nuclear deformation. This model was predictive of diverse mechanosensing responses in a broad range of cells. Results support the hypothesis that diverse mechanosensing phenomena across many cell types arise from a simple, unified set of mechanosensing pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factores de Transcripción , Factores de Transcripción/metabolismo , Mecanotransducción Celular , Proteínas Señalizadoras YAP , Matriz Extracelular/metabolismo , Integrinas/metabolismo
5.
Small ; 19(1): e2204498, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228093

RESUMEN

Soft-hard tissue interfaces in nature present a diversity of hierarchical transitions in composition and structure to address the challenge of stress concentrations that would otherwise arise at their interface. The translation of these into engineered materials holds promise for improved function of biomedical interfaces. Here, soft-hard tissue interfaces found in the body in health and disease, and the application of the diverse, functionally graded, and hierarchical structures that they present to bioinspired engineering materials are reviewed. A range of such bioinspired engineering materials and associated manufacturing technologies that are on the horizon in interfacial tissue engineering, hydrogel bioadhesion at the interfaces, and healthcare and medical devices are described.


Asunto(s)
Materiales Biomiméticos , Ingeniería de Tejidos
6.
Nat Mater ; 21(9): 1081-1090, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817964

RESUMEN

How cells sense tissue stiffness to guide cell migration is a fundamental question in development, fibrosis and cancer. Although durotaxis-cell migration towards increasing substrate stiffness-is well established, it remains unknown whether individual cells can migrate towards softer environments. Here, using microfabricated stiffness gradients, we describe the directed migration of U-251MG glioma cells towards less stiff regions. This 'negative durotaxis' does not coincide with changes in canonical mechanosensitive signalling or actomyosin contractility. Instead, as predicted by the motor-clutch-based model, migration occurs towards areas of 'optimal stiffness', where cells can generate maximal traction. In agreement with this model, negative durotaxis is selectively disrupted and even reversed by the partial inhibition of actomyosin contractility. Conversely, positive durotaxis can be switched to negative by lowering the optimal stiffness by the downregulation of talin-a key clutch component. Our results identify the molecular mechanism driving context-dependent positive or negative durotaxis, determined by a cell's contractile and adhesive machinery.


Asunto(s)
Actomiosina , Fenómenos Biomecánicos , Movimiento Celular
7.
J Mech Phys Solids ; 1802023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38559448

RESUMEN

Cells in solid tissues sense and respond to mechanical signals that are transmitted through extracellular matrix (ECM) over distances that are many times their size. This long-range force transmission is known to arise from strain-stiffening and buckling in the collagen fiber ECM network, but must also pass through the denser pericellular matrix (PCM) that cells form by secreting and compacting nearby collagen. However, the role of the PCM in the transmission of mechanical signals is still unclear. We therefore studied an idealized computational model of cells embedded within fibrous collagen ECM and PCM. Our results suggest that the smaller network pore sizes associated with PCM attenuates tension-driven collagen-fiber alignment, undermining long-range force transmission and shielding cells from mechanical stress. However, elongation of the cell body or anisotropic cell contraction can compensate for these effects to enable long distance force transmission. Results are consistent with recent experiments that highlight an effect of PCM on shielding cells from high stresses. Results have implications for the transmission of mechanical signaling in development, wound healing, and fibrosis.

8.
J Am Soc Nephrol ; 33(1): 155-173, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758982

RESUMEN

BACKGROUND: Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS: We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS: Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS: Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Imagenología Tridimensional/métodos , Aprendizaje Automático , Microscopía Electrónica , Podocitos/ultraestructura , Animales , Ratones , Ratones Endogámicos C57BL , Modelos Animales
9.
Biophys J ; 121(20): 3917-3926, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36045574

RESUMEN

Acoustic transduction by plants has been proposed as a mechanism to enable just-in-time up-regulation of metabolically expensive defensive compounds. Although the mechanisms by which this "hearing" occurs are unknown, mechanosensation by elongated plant hair cells known as trichomes is suspected. To evaluate this possibility, we developed a theoretical model to evaluate the acoustic radiation force that an elongated cylinder can receive in response to sounds emitted by animals, including insect herbivores, and applied it to the long, cylindrical stem trichomes of the tomato plant Solanum lycopersicum. Based on perturbation theory and validated by finite element simulations, the model quantifies the effects of viscosity and frequency on this acoustic radiation force. Results suggest that acoustic emissions from certain animals, including insect herbivores, may produce acoustic radiation force sufficient to trigger stretch-activated ion channels.


Asunto(s)
Solanum lycopersicum , Animales , Solanum lycopersicum/fisiología , Tricomas , Acústica
10.
Int J Solids Struct ; 2502022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38161357

RESUMEN

Tears to the rotator cuff often require surgical repair. These repairs often culminate in re-tearing when sutures break through the tendon in the weeks following repair. Although numerous studies have been performed to identify suturing strategies that reduce this risk by balancing forces across sutures, none have accounted for how the viscoelastic nature of tendon influences load sharing. With the aim of providing insight into this problem, we studied how tendon viscoelasticity, tendon stiffness, and suture anchor spacing affect this balancing of forces across sutures. Results from a model of a three-row sutured re-attachment demonstrated that optimized distributions of suture stiffnesses and of the spacing of suture anchors can balance the forces across sutures to within a few percent, even when accounting for tendon viscoelasticity. Non-optimized distributions resulted in concentrated force, typically in the outermost sutures. Results underscore the importance of accounting for viscoelastic effects in the design of tendon to bone repairs.

11.
Biophys J ; 120(17): 3764-3775, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34280368

RESUMEN

Although coupling between cardiomyocytes and myofibroblasts is well known to affect the physiology and pathophysiology of cardiac tissues across species, relating these observations to humans is challenging because the effect of this coupling varies across species and because the sources of these effects are not known. To identify the sources of cross-species variation, we built upon previous mathematical models of myofibroblast electrophysiology and developed a mechanoelectrical model of cardiomyocyte-myofibroblast interactions as mediated by electrotonic coupling and transforming growth factor-ß1. The model, as verified by experimental data from the literature, predicted that both electrotonic coupling and transforming growth factor-ß1 interaction between myocytes and myofibroblast prolonged action potential in rat myocytes but shortened action potential in human myocytes. This variance could be explained by differences in the transient outward K+ current associated with differential Kv4.2 gene expression across species. Results are useful for efforts to extrapolate the results of animal models to the predicted effects in humans and point to potential therapeutic targets for fibrotic cardiomyopathy.


Asunto(s)
Miocitos Cardíacos , Miofibroblastos , Potenciales de Acción , Animales , Diferenciación Celular , Células Cultivadas , Fibrosis , Miocitos Cardíacos/patología , Miofibroblastos/patología , Ratas , Factor de Crecimiento Transformador beta1
12.
Macromol Rapid Commun ; 42(14): e2100147, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34051002

RESUMEN

Hydrogels are commonly doped with stiff nanoscale fillers to endow them with the strength and stiffness needed for engineering applications. Although structure-property relations for many polymer matrix nanocomposites are well established, modeling the new generation of hydrogel nanocomposites requires the study of processing-structure-property relationships because subtle differences in chemical kinetics during their synthesis can cause nearly identical hydrogels to have dramatically different mechanical properties. The authors therefore assembled a framework to relate synthesis conditions (including hydrogel and nanofiller mechanical properties and light absorbance) to gelation kinetics and mechanical properties. They validated the model against experiments on a graphene oxide (GO) doped oligo (ethylene glycol) diacrylate (OEGDA), a system in which, in apparent violation of laws from continuum mechanics, doping can reduce rather than increase the stiffness of the resulting hydrogel nanocomposites. Both model and experiment showed a key role light absorbance-dominated gelation kinetics in determining nanocomposite mechanical properties in conjunction with nanofiller reinforcement, with the nanofiller's attenuation of chemical kinetics sometimes outweighing stiffening effects to explain the observed, anomalous loss of stiffness. By bridging the chemical kinetics and mechanics of nanocomposite hydrogels, the authors' modeling framework shows promise for broad applicability to design of hydrogel nanocomposites.


Asunto(s)
Nanocompuestos , Hidrogeles , Polímeros
13.
14.
Biophys J ; 119(2): 265-273, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32621863

RESUMEN

Analysis of fluctuations arising as fluorescent particles pass through a focused laser beam has enabled quantitative characterization of a broad range of molecular kinetic processes. Two key mathematical frameworks that have enabled these quantifications are fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis. Although these frameworks are effective and accurate when the focused laser beam is well approximated by an infinite Gaussian beam with a waist that is small compared to the size of the region over which the fluorescent particles can diffuse, they cannot be applied to situations in which this region is bounded at the nanoscale. We therefore derived general forms of the FCS and PCH frameworks for bounded systems. The finite-domain form of FCS differs from the classical form in its boundary and initial conditions and requires development of a new Fourier space solution for fitting data. Our finite-domain FCS predicts simulated data accurately and reduces to a previous model for the special case when the system is much larger than the Gaussian beam and can be considered to be infinite. We also derived the PCH form for the bounded systems. Our approach enables estimation of the concentration of diffusing fluorophores within a finite domain for the first time, to our knowledge. The method opens the possibility of quantification of kinetics in several systems for which this has never been possible.


Asunto(s)
Colorantes Fluorescentes , Fotones , Difusión , Distribución Normal , Espectrometría de Fluorescencia
15.
Adv Funct Mater ; 30(32): 2000639, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32802013

RESUMEN

Photoresponsive hydrogels (PRHs) are soft materials whose mechanical and chemical properties can be tuned spatially and temporally with relative ease. Both photo-crosslinkable and photodegradable hydrogels find utility in a range of biomedical applications that require tissue-like properties or programmable responses. Progress in engineering with PRHs is facilitated by the development of theoretical tools that enable optimization of their photochemistry, polymer matrices, nanofillers, and architecture. This review brings together models and design principles that enable key applications of PRHs in tissue engineering, drug delivery, and soft robotics, and highlights ongoing challenges in both modeling and application.

16.
J Mech Phys Solids ; 1382020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33132418

RESUMEN

Flow of fluids within biological tissues often meets with resistance that causes a rate- and size-dependent material behavior known as poroelasticity. Characterizing poroelasticity can provide insight into a broad range of physiological functions, and is done qualitatively in the clinic by palpation. Indentation has been widely used for characterizing poroelasticity of soft materials, where quantitative interpretation of indentation requires a model of the underlying physics, and such existing models are well established for cases of small strain and modest force relaxation. We showed here that existing models are inadequate for large relaxation, where the force on the indenter at a prescribed depth at long-time scale drops to below half of the initially peak force (i.e., F(0)/F(∞) > 2). We developed an indentation theory for such cases of large relaxation, based on Biot theory and a generalized Hertz contact model. We demonstrated that our proposed theory is suitable for biological tissues (e.g., spleen, kidney, skin and human cirrhosis liver) with both small and large relaxations. The proposed method would be a powerful tool to characterize poroelastic properties of biological materials for various applications such as pathological study and disease diagnosis.

17.
J Biomech Eng ; 142(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891380

RESUMEN

Estimating strain on surfaces of deforming three-dimensional (3D) structures is a critical need in experimental mechanics. Although single-camera techniques excel at estimating deformation on a surface parallel to the imaging plane, they are prone to artifact for 3D motion because they cannot distinguish between out-of-plane motion and in-plane dilatation. Multiview (e.g., stereo) camera systems overcome this via a three-step process consisting of: (1) independent surface registration, (2) triangulation to estimate surface displacements, and (3) deformation estimation. However, existing methods are prone to errors associated with numerical differentiation when computing estimating strain fields from displacement fields unless regularization schemes are used. Such regularization schemes can introduce inaccuracy into strain estimation. Inspired by previous work which combined registration and deformation estimation into a single step for 2D images and 3D imaging stacks, we developed a theory for simultaneous image registration, 3D triangulation, and deformation estimation in a multiview system. The deformation estimation does not require numerical differentiation of displacement fields to estimate strain fields. We present here the theoretical foundations and derivation of two related implementations of this approach, and discuss their strengths and weaknesses.


Asunto(s)
Imagenología Tridimensional , Algoritmos , Fantasmas de Imagen
18.
Chem Rev ; 117(20): 12764-12850, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28991456

RESUMEN

The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.


Asunto(s)
Materiales Biomiméticos , Microambiente Celular , Matriz Extracelular , Ingeniería de Tejidos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo
19.
J Biomech Eng ; 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31141589

RESUMEN

Giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) are synthetic model systems widely used in biophysical studies of lipid membranes. Although SLBs are advantageous for biophysical analysis, phase separation behaviors of lipid species in these two model systems can differ due to the lipid-substrate interactions that are present only for SLBs. In the present study, we report that in binary systems, certain phase domains on GUVs retain their original shapes and patterns after the GUVs rupture on glass surfaces. This enabled atomic force microscopy (AFM) experiments on phase domains, a procedure difficult to perform and interpret when applied to GUVs. Unusual phase behavior was evident in binary GUVs containing DLPC and either DPPC or DSPC. These DLPC/DSPC and DLPC/DPPC GUVs both presented the thermodynamic anomaly of having two co-existing gel phases. One phase (a bright phase) included a relatively high concentration of DiI-C20 but excluded Bodipy-HPC, and the other (dark phase) excluded both probes. The bright phases are of interest because they seem to stabilize dark phases against coalescence. Results suggested that the gel phases labeled by DiIC20 in the DLPC/DSPC membrane, which surround the dark gel phase, is an extra layer of membrane, indicating a highly curved structure that might stabilize the interior dark domains, thereby enabling the co-existence of two different gel phases. Results show the utility of AFM on collapsed GUVs, and suggest a possible mechanism for stabilization of lipid domains.

20.
J Biomech Eng ; 141(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30267039

RESUMEN

Quantifying dynamic strain fields from time-resolved volumetric medical imaging and microscopy stacks is a pressing need for radiology and mechanobiology. A critical limitation of all existing techniques is regularization: because these volumetric images are inherently noisy, the current strain mapping techniques must impose either displacement regularization and smoothing that sacrifices spatial resolution, or material property assumptions that presuppose a material model, as in hyperelastic warping. Here, we present, validate, and apply the first three-dimensional (3D) method for estimating mechanical strain directly from raw 3D image stacks without either regularization or assumptions about material behavior. We apply the method to high-frequency ultrasound images of mouse hearts to diagnose myocardial infarction. We also apply the method to present the first ever in vivo quantification of elevated strain fields in the heart wall associated with the insertion of the chordae tendinae. The method shows promise for broad application to dynamic medical imaging modalities, including high-frequency ultrasound, tagged magnetic resonance imaging, and confocal fluorescence microscopy.


Asunto(s)
Corazón/diagnóstico por imagen , Imagenología Tridimensional , Animales , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Músculos Papilares/diagnóstico por imagen , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA