Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(20): 14983-14988, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33001644

RESUMEN

Lithium borides have been synthesized exclusively through classical solid-state chemistry processes that lead to bulk materials. Indeed, due to the lack of reactivity of the solid boron precursors usually employed and to the high covalent connectivity in such solids, high temperatures and long reaction times are necessary to obtain lithium borides. These conditions result in extensive crystal growth. Here we present the synthesis of nanoparticles of a lithium boride bearing tunnel-like cavities templated by neutral Li2O species, which have been reported to be labile. To reach this goal, a liquid-phase synthesis in inorganic molten salts has been developed. The Li6B18(Li2O)x nanoparticles have been characterized by scanning and transmission electronic microscopy (SEM and TEM), X-ray diffraction (XRD), and Raman spectroscopy. We provide an in-depth structural characterization by using 1H, 7Li, and 11B solid-state nuclear magnetic resonance (NMR) coupled with DFT modeling to provide the first assignment of 7Li and 11B solid-state NMR signals in lithium borides. We then assess the nanoparticle morphology oriented along the direction of the cavities. This feature shows similarities with structurally related hexagonal tungsten bronzes and could therefore affect the electrochemical and ion exchange properties.

2.
Adv Sci (Weinh) ; 11(9): e2304454, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38115757

RESUMEN

Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.


Asunto(s)
Huesos , Colágeno , Animales , Ovinos , Osteoblastos , Hueso Cortical
3.
Dalton Trans ; 50(45): 16703-16710, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34761779

RESUMEN

Sodium silicide Na4Si4 is a reductive and reactive source of silicon highly relevant to designing non-oxidic silicon materials, including clathrates, various silicon allotropes, and metal silicides. Despite the importance of this compound, its production in high amounts and high purity is still a bottleneck with reported methods. In this work, we demonstrate that readily available silicon nanoparticles react with sodium hydride with a stoichiometry close to the theoretical one and at a temperature of 395 °C for shorter duration than previously reported. This enhanced reactivity of silicon nanoparticles makes the procedure robust and less dependent on experimental parameters, such as gas flow. As a result, we deliver a procedure to achieve Na4Si4 with purity of ca. 98 mol% at the gram scale. We show that this compound is an efficient precursor to deliver selectively type I and type II sodium silicon clathrates depending on the conditions of thermal decomposition.

4.
Mater Sci Eng C Mater Biol Appl ; 118: 111537, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255090

RESUMEN

Aseptic loosening and bacterial infections are the two main causes of failure for metallic implants used for joint replacement. A coating that is both bioactive and possesses antimicrobial properties may address such shortcomings and improve the performance of the implant. We have sought to study the properties of combining hydroxyapatite-based nanoparticles or coatings with baicalein, a plant-extracted molecule with both antibacterial and antioxidant properties. (B-type) carbonated hydroxyapatite nanoparticles prepared by a chemical wet method could subsequently adsorbed by soaking in a baicalein solution. The amount of adsorbed baicalein was determined to be 63 mg.g-1 by thermogravimetric measurements. In a second approach, baicalein was adsorbed on a biomimetic calcium-deficient hydroxyapatite planar coating (12 µm thick) deposited on Ti6Al4V alloy from an aqueous solution of calcium, phosphate, sodium and magnesium salts. Soaking of the hydroxyapatite coated on titanium alloy in a baicalein solution induced partial dissolution/remodeling of the upper surface of the coating. However, the observed remodeling of the surface was much more pronounced in the presence of a baicalein solution, compared to pure water. The presence of adsorbed baicalein on the HAp layer, although it could not be precisely quantified, was assessed by XPS and fluorescence analysis. Planar coatings exhibited significant antibacterial properties against Staphylococcus epidermidis. Baicalein-modified nanoparticles exhibited significant antioxidant properties. These results illustrate the potential of hydroxyapatite used as a carrier for natural biologically-active molecules and also discuss the challenges associated with their applications as antibacterial agents.


Asunto(s)
Durapatita , Nanopartículas , Antibacterianos/farmacología , Antioxidantes/farmacología , Materiales Biocompatibles Revestidos/farmacología , Flavanonas , Propiedades de Superficie , Titanio
5.
Materials (Basel) ; 10(8)2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28786939

RESUMEN

The hydrolysis-condensation of trialkoxysilanes under strictly controlled conditions allows the production of silsesquioxanes (SSQs) with tunable size and architecture ranging from ladder to cage-like structures. These nano-objects can serve as building blocks for the preparation of hybrid organic/inorganic materials with selected properties. The SSQs growth can be tuned by simply controlling the reaction duration in the in situ water production route (ISWP), where the kinetics of the esterification reaction between carboxylic acids and alcohols rules out the extent of organosilane hydrolysis-condensation. Tunable SSQs with thiol functionalities (SH-NBBs) are suitable for further modification by exploiting the simple thiol-ene click reaction, thus allowing for modifying the wettability properties of derived coatings. In this paper, coatings were prepared from SH-NBBs with different architecture onto cotton fabrics and paper, and further functionalized with long alkyl chains by means of initiator-free UV-induced thiol-ene coupling with 1-decene (C10) and 1-tetradecene (C14). The coatings appeared to homogeneously cover the natural fibers and imparted a multi-scale roughness that was not affected by the click functionalization step. The two-step functionalization of cotton and paper warrants a stable highly hydrophobic character to the surface of natural materials that, in perspective, suggests a possible application in filtration devices for oil-water separation. Furthermore, the purification of SH-NBBs from ISWP by-products was possible during the coating process, and this step allowed for the fast, initiator-free, click-coupling of purified NBBs with C10 and C14 in solution with a nearly quantitative yield. Therefore, this approach is an alternative route to get sol-gel-derived, ladder-like, and cage-like SSQs functionalized with long alkyl chains.

6.
Chem Sci ; 8(1): 742-747, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451222

RESUMEN

Copper is currently extensively studied because it provides promising electrodes for carbon dioxide electroreduction. The original combination, reported here, of a nanostructured porous dendritic Cu-based material, characterized by electron microcopy (SEM, TEM) and X-ray diffraction methods, and a water/ionic liquid mixture as the solvent, contributing to CO2 solubilization and activation, results in a remarkably efficient (large current densities at low overpotentials), stable and selective (large faradic yields) electrocatalytic system for the conversion of CO2 into formic acid, a product with a variety of uses. These results provide new directions for the further improvement of Cu electrodes.

7.
Chem Asian J ; 10(11): 2419-26, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26317317

RESUMEN

Control over size monodispersity in chiral self-assembled systems is important for potential applications like templating, tissue engineering or enantioselective chromatography, just to cite a few examples. In this context, it was reported that the saturated form of sophorolipids (SL), a bioderived glycolipid, are able to form self-assembled twisted ribbons in water at neutral pH. Here, we show the possibility to control their size dispersion, generally between 10 and 40 nm after synthesis to a value of 13.5±1.5 nm, by a simple dialysis step eliminating the excess of NaCl. We use transmission electron microscopy under cryogenic conditions (cryo-TEM) combined with small angle neutron scattering (SANS) to characterize the ribbon dispersion both visually and statistically. Two negative controls show the importance of salt in the aggregation process of the ribbons.


Asunto(s)
Glucolípidos/química , Dicroismo Circular , Glucolípidos/síntesis química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Cloruro de Sodio/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA